STRUCTURAL CALCULATIONS

DATE: February 18, 2020

PROJECT: 18–220 PB POST BASE

BY: JOSHUA ANNETT CHECKED BY: RICK HERNANDEZ, P.E., S.E. (OR and WA) RON DERRICK, P.E., (CA)

FOR: WOODSTONE STRUCTURES, LLC

PROJECT DESCRIPTION & SCOPE OF SERVICES:

Structural design in accordance with the 2012 International Building Code (IBC) for the above referenced project as follows:

Should conditions differ from those depicted in this report or accompanying drawings, contact this office for further direction. The analyses contained herein is for the Post Base, included fasteners, and specified concrete anchors only. Branch Engineering, Inc. has not reviewed any framing or foundation elements for any structure considered to be supporting the above referenced product and/or the connected roof.

SPECIAL INSPECTION:

None

NOTES:

Analysis based upon measurements taken from Post Base bracket assembly, supplied by Woodstone Structures, LLC, October 2019.

No analysis of supporting structure or supporting framing has been conducted in conjunction with this report. Consult a local Engineer for each individual installation scenario.

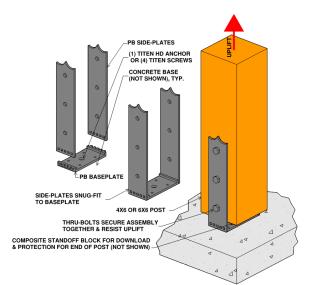
See additional notes below "PB Allowable Loads" table.

EUGENE-SPRINGFIELD ALBANY

STRUCTURAL ENGINEERING REPORT

DATE:	February 18, 2020
PROJECT:	18-220 PB POST BASE
CLIENT:	WOODSTONE STRUCTURES, LLC
REPORT BY:	BRANCH ENGINEERING, INC.

POST BASE BRACKET (PB)


DESCRIPTION:

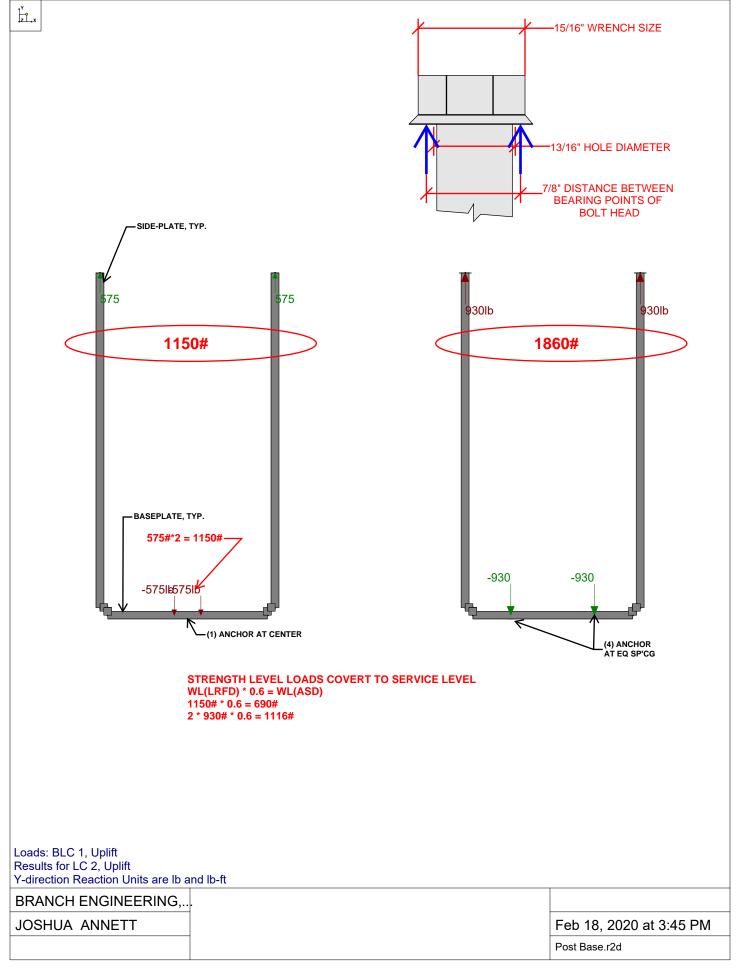
This structural engineering report has been requested by Woodstone Structures, LLC for preliminary analysis of a proprietary product called, "PB Post Base." The objective of this analysis is to report the allowable capacity of the product, in its current configuration, for use in supporting vertical loading in both the downward direction and in uplift. ASSUMED MATERIAL:

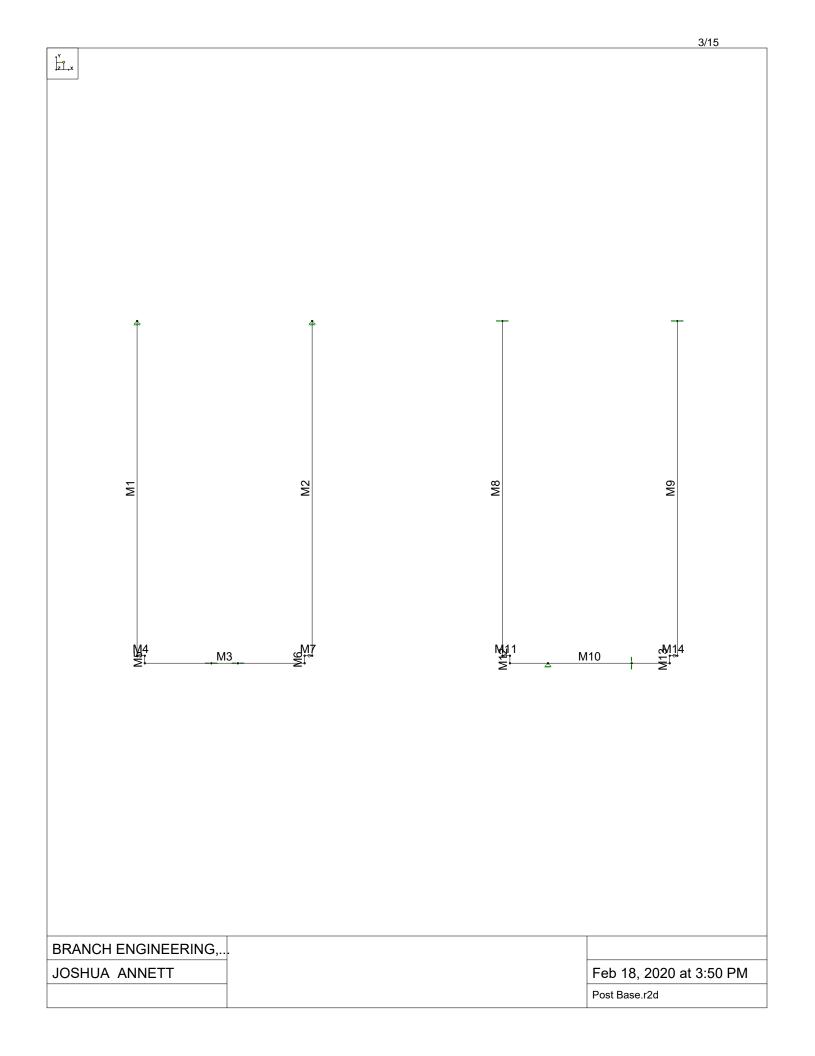
(1) BASEPLATE - 1/4" ASTM A36
(2) SIDE-PLATES - 1/4" ASTM A36
(3) 1/2" DIA. ASTM A307 BOLT
(1) 5/8" DIA. TITEN HD CONCRETE ANCHOR (NOT SUPPLIED)
OR (4) 1/4" DIA. TITEN 2 CONCRETE SCREW (NOT SUPPLIED)
POST - SPECIES PER TABLE (NOT SUPPLIED)
OPTIONS:

POST SIZE MAY VARY PER TABLE.

PB ALLOWABLE LOADS

MODEL & ANCHORAGE	COLUMN SIZE (NOM.)	BASEPLATE THICKNESS		FASTENER TO	MIN CONC. THICKNESS	MIN. EMBED	SIDE-PLATE FASTENER	DF/SP DOWNLOAD	DF/SP UPLIFT (160)
				CONCRETE	(in)	(in)		(lb)	(lb)
PB w/ (1) ANCHOR BOLT AT CENTER	4x6 OR 6x6	1/4"	1/4"	(1) TITEN HD	6	4	(3) 1/2" BOLT		690
PB w/ (4) CONCRETE SCREWS	4x6 OR 6x6	1/4"	1/4"	(4) TITEN 2	3 1/4"	1 3/4"	(3) 1/2" BOLT		1116


NOTES:


9.

- 1. THE ABOVE STATED ALLOWABLE LOADS ASSUME WOOD POST SPECIES HEM-FIR OR BETTER (i.e. G>0.43).
- 2. ALLOWABLE LOADS SHOWN ARE FOR A SINGLE PB INSTALLED ON A CONCRETE BASE HAVING AT LEAST THE ABOVE STATED THICKNESS.
- 3. ANALYSIS AND ALLOWABLE LOADS ARE FOR THE STEEL BRACKET, INCLUDED BOLTS, AND SPECIFIED CONCRETE ANCHORS ONLY.
- 4. CONSULT WITH A LOCAL ENGINEER FOR EACH INDIVIDUAL INSTALLATION.
- 5. NO DESIGN OF SUPPORTING OR SUPPORTED FRAMING HAS BEEN CONDUCTED. CONSULT AN INDEPENDENT ENGINEER FOR DESIGN OF SUCH FRAMING.
- 6. UPLIFT LOADS HAVE BEEN INCREASED FOR WIND OR SEISMIC LOADING, WITH NO FURTHER INCREASE ALLOWED.
- 7. ALLOWABLE LOADS ARE FOR VERTICAL LOADS ONLY. LATERAL BRACING MUST BE SUPPLIED BY OTHER LATERAL FORCE RESISTING SYSTEMS DESIGNED BY OTHERS. LATERAL BRACING SYSTEMS MUST BE INDEPENDENT FROM THE PB BRACKET & POSTS.
- 8. ALLOWABLE LOADS SHOWN ARE FOR WET-SERVICE CONDITIONS (MOISTURE CONTENT >19%). NO INCREASE ALLOWED FOR DRY-SERVICE.
 - PROVIDE THE FOLLOWING MINIMUMS FOR BOLTS THRU WOOD POST & STEEL PLATE:
 - a. EDGE DISTANCE = CENTER COLUMN ON BRACKET EACH WAY.
 - b. END DISTANCE = 3 ½ INCHES (END OF POST TO CENTER OF MIDDLE THRU-BOLT)
- 10. PROVIDE THE FOLLOWING MINIMUMS TITEN HD CONCRETE ANCHORS:
- a. EDGE DISTANCE = $4\frac{1}{2}$ INCHES ALL AROUND.
- 11. PROVIDE THE FOLLOWING MINIMUMS TITEN 2 CONCRETE SCREWS:
 - a. EDGE DISTANCE = 3 INCHES ALL AROUND.
- 12. BOLT HOLES SHALL BE A MINIMUM OF 1/32" AND A MAXIMUM OF 1/16" LARGER THAN THE BOLT DIAMETER (PER 2012 NDS SEC. 11.1.3.2)
- 13. POST & PB ARE ASSUMED TO BE INSTALLED IN A VERTICALLY PLUMB POSITION WITH POST BEING LOADED CONCENTRICALLY ABOUT ITS CENTER EACH WAY.
- 14. BASEPLATE MAY EXPERIENCE INELASTIC YIELDING AT THE ABOVE STATED UPLIFT CAPACITY. SUBSEQUENT REPLACEMENT MAY BE REQUIRED.

EUGENE-SPRINGFIELD ALBANY

1/15

1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5 F)	Density[lb/ft^3]	Yield[ksi]
1	A36 Gr.36	29000	11154	.3	.65	490	36

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	l (90,270) [in4]	l (0,180) [in4]
1	HR1A	PL1/4x2.75	Beam	None	A36 Gr.36	Typical	.688	.004	.433
2	HR2	PL1/4x1.25	Beam	None	A36 Gr.36	Typical	.313	.002	.041

Member Primary Data

	Label	I Joint	J Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N1	N2	90	HR1A	Beam	None	A36 Gr.36	Typical
2	M2	N3	N4	90	HR1A	Beam	None	A36 Gr.36	Typical
3	M3	N5	N6	90	HR1A	Beam	None	A36 Gr.36	Typical
4	M4	N2	N7	90	HR2	Beam	None	A36 Gr.36	Typical
5	M5	N7	N5	90	HR1A	Beam	None	A36 Gr.36	Typical
6	M6	N6	N8	90	HR1A	Beam	None	A36 Gr.36	Typical
7	M7	N8	N4	90	HR2	Beam	None	A36 Gr.36	Typical
8	M8	N10	N11	90	HR1A	Beam	None	A36 Gr.36	Typical
9	M9	N12	N13	90	HR1A	Beam	None	A36 Gr.36	Typical
10	M10	N14	N15	90	HR1A	Beam	None	A36 Gr.36	Typical
11	M11	N11	N16	90	HR2	Beam	None	A36 Gr.36	Typical
12	M12	N16	N14	90	HR1A	Beam	None	A36 Gr.36	Typical
13	M13	N15	N17	90	HR1A	Beam	None	A36 Gr.36	Typical
14	M14	N17	N13	90	HR2	Beam	None	A36 Gr.36	Typical

Member Advanced Data

	Label	l Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rati	ТОМ	Inactive
1	M1			•			Ýes			
2	M2						Yes			
3	M3						Yes			
4	M4	PIN					Yes	Default		
5	M5						Yes			
6	M6						Yes			
7	M7		PIN				Yes	Default		
8	M8						Yes			
9	M9						Yes			
10	M10						Yes			
11	M11	PIN					Yes	Default		
12	M12						Yes			
13	M13						Yes			
14	M14		PIN				Yes	Default		

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lb-out[in]	Lb-in[in]	Lcomp top[in]Lcon	np bot[in]I	L-torqu	. K-out	K-in	Cb	Function
1	M1	HR1A	10.995			Lb out						Lateral
2	M2	HR1A	10.995			Lb out						Lateral
3	M3	HR1A	5.25			Lb out						Lateral
4	M4	HR2	.25			Lb out						Lateral
5	M5	HR1A	.25			Lb out						Lateral
6	M6	HR1A	.25			Lb out						Lateral
7	M7	HR2	.25			Lb out						Lateral

: BRANCH ENGINEERING, INC. : JOSHUA ANNETT

Hot Rolled Steel Design Parameters (Continued)

1

	Label	Shape	Length[in]	Lb-out[in]	Lb-in[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu	. K-out	K-in	Cb	Function
8	M8	HR1A	10.995			Lb out						Lateral
9	M9	HR1A	10.995			Lb out						Lateral
10	M10	HR1A	5.25			Lb out						Lateral
11	M11	HR2	.25			Lb out						Lateral
12	M12	HR1A	.25			Lb out						Lateral
13	M13	HR1A	.25			Lb out						Lateral
14	M14	HR2	.25			Lb out						Lateral

Basic Load Cases

_		BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
	1	Uplift	WL		-	4		

Joint Loads and Enforced Displacements (BLC 1 : Uplift)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N10	L	Y	930
2	N12	L	Y	930
3	N20	L	Y	-575
4	N9	L	Y	-575

Load Combinations

	Description	So	.P	S	BLC	Fact.	.BLC	Fact	.BLC	Fact.	BLC	Fact												
1	LRFD																							
2	Uplift		Υ		WL	1																		

Joint Reactions (By Combination)

	LC	Joint Label	X [lb]	Y [lb]	MZ [lb-ft]
1	2	N1	364	575	Ō
2	2	N3	.364	575	0
3	2	N9	364	0	0
4	2	N10	749	0	0
5	2	N12	.749	0	0
6	2	N18	0	-929.997	0
7	2	N19	0	-930.003	0
8	2	N20	.364	0	0
9	2	Totals:	0	-710	
10	2	COG (in):	X: 34.312	Y: 29.459	

Member AISC 14th(360-10): LRFD Steel Code Checks

<1.0 = OK!

	LC	Member	Shape	UC Max	Loc[in]	Shear UC	Loc[in]	phi*Pnc[lb]	phi*Pnt[lb]	phi*Mn[lb-ft]	Cb	Egn
1	2	M1	PL1/4x2.75	.013	0	.000	0	6691.459	22275	116.016	1	H1-1b
2	2	M2	PL1/4x2.75	.013	0	.000	0	6691.459	22275	116.016	1	H1-1b
3	2	M3	PL1/4x2.75	1.004	2.188	.043	3.063	16858.764	22275	116.016	1	H1-1b
4	2	M4	PL1/4x1.25	.227	.25	.095	0	10118.606	10125	52.734	1	H1-1b
5	2	M5	PL1/4x2.75	.116	0	.001	0	22260.933	22275	116.016	1	H1-1b
6	2	M6	PL1/4x2.75	.116	.25	.001	0	22260.933	22275	116.016	1	H1-1b
7	2	M7	PL1/4x1.25	.227	0	.095	0	10118.606	10125	52.734	1	H1-1b
8	2	M8	PL1/4x2.75	.021	0	.000	0	6691.459	22275	116.016	1	H1-1b
9	2	M9	PL1/4x2.75	.021	0	.000	0	6691.459	22275	116.016	1	H1-1b
10	2	M10	PL1/4x2.75	.996	3.992	.070	0	16858.764	22275	116.016	1	H1-1b

Member AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	LC	Member	Shape	UC Max	Loc[in]	Shear UC	Loc[in]	phi*Pnc[lb]	phi*Pnt[lb]	phi*Mn[lb-ft]	Cb	Eqn
11	2	M11	PL1/4x1.25	.367	.25	.153	0	10118.606	10125	52.734	1	H1-1b
12	2	M12	PL1/4x2.75	.188	0	.003	0	22260.933	22275	116.016	1	H1-1b
13	2	M13	PL1/4x2.75	.188	.25	.003	0	22260.933	22275	116.016	1	H1-1b
14	2	M14	PL1/4x1.25	.367	0	.153	0	10118.606	10125	52.734	1	H1-1b

Since 1977 310 5th Street

DATE: 2/18/2020

PROJECT: 18-220 WOODSTONE STRUCTURES

civil • transportation Springfield, Oregon 97477 structural • geotechnical S U R V E Y I N G BY: JOSHUA ANNETT CHECKED BY: RICK HERNANDEZ, P.E., S.E. SHEET: PLvert (Post Base) Bolted Shear Connection Design for Bolts in Standard Holes Steel thickness: 0.25 in F_y: 36 ksi Steel width: 2.75 in F_u: 58 ksi φF_{nv}: Steel specification: 20.25 ksi A36 A_{gv}: Bolt diameter, d: 0.69 in² Shear Yielding 0.5 in Bolt specification: A_g : 0.69 in² Tensile Yielding A307 Thread condition: A_{nv}: 1.02 in² Ν Shear Rupture A_e: Bolt Hole Preparation Method: Punch 0.53 in2 A_{nv}: 1.02 in2 Threaded Part Fu: 60 ksi Block Shear 1.25 in2 Bolt spacing, s: 3.75 in Block Shear A_{gv}: 0.19 in² Block Shear Edge distance, L_{ev} : 1.25 in A_{nt}: Side distance, L_{eh} : 1.375 in U_{bs}: Block Shear 1 Number of bolts in row: 1 2 U: Number of rows: 1

Tensile Rupture Shear Lag Factor Shear Yielding: $\phi R_n =$ 14.85 kip Tensile Yielding: $\phi R_n =$ 22.28 kip Shear Rupture: $\phi R_n =$ 26.51 kip Tensile Rupture: $\phi R_n =$ 23.11 kip Block Shear Rupture: $\phi R_n =$ 28.41 kip Bolt Shear Strength: $\phi R_n =$ 7.95 kip Bearing Strength at Bolt Hole: $\phi R_n =$ 24.47 kip CAPACITY OF SIDE PLATE AT BOLT HOLES WL(ASD) = 2 * 0.6 WL = 9,540# 7.95 kips^K **Connection Design Strength:**

Since 1977 310 5th Street

DATE: 2/18/2020

civil • transportation structural • geotechnical S U R V E Y I N G

PROJECT: 18-220 WOODSTONE STRUCTURES **BY: JOSHUA ANNETT** CHECKED BY: RICK HERNANDEZ, P.E., S.E. SHEET: PLvert (Post Base at Baseplate)

			J	Weite (1 03t Buse	at Baschiatel
		Bolted Shear Connection Desi	gn for Bolts in	Standard Holes	
Steel thickness:	0.25 in		F _y :	36 ksi	
Steel width:	2.75 in		F _u :	58 ksi	
Steel specification:	A36		φF _{nv} :	20.25 ksi	0
Bolt diameter, d:	0.25 in		A _{gv} :	0.47 in ²	Shear Yielding
Bolt specification:	A307		A _g :	0.69 in ²	Tensile Yielding
Thread condition:	Ν		A _{nv} :	0.23 in ²	Shear Rupture
Bolt Hole Preparation Method:	Punch		A _e :	0.22 in ²	Tensile Rupture
Threaded Part F _u :	60 ksi		A _{nv} :	0.14 in ²	Block Shear
Bolt spacing, s:	0.5 in		A _{gv} :	0.09 in ²	Block Shear
Edge distance, L _{ev} :	0.375 in		A _{nt} :	0.13 in ²	Block Shear
Side distance, L _{eh} :	0.375 in		U _{bs} :	0.5	Block Shear
Number of bolts in row:	1		U:	1	Shear Lag Factor
Number of rows:	5				
Spacing between rows:	0.5 in	Shear Yielding: $\phi R_n =$	10.13 kip		
		Tensile Yielding: $\phi R_n =$	22.28 kip		
		Shear Rupture: $\phi R_n =$	6.12 kip		
		Tensile Rupture: $\phi R_n =$	9.52 kip		
		Block Shear Rupture: $\phi R_n =$	4.24 kip		
		Bolt Shear Strength: $\phi R_n =$			
	Beari	ng Strength at Bolt Hole: $\phi R_n =$	8.97 kip		
		Connection Design Strength:	4.24 ki	ps	

SIMPSON

Strong-J

Anchor Designer™ Software Version 2.8.7094.1

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019
Engineer:		Page:	1/5
Project:			
Address:	310 5TH STREET		
Phone:	(541) 746-0637		
E-mail:	JOSHA@BRANCHENGINEERING	G.COM	

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.625 Nominal Embedment depth (inch): 4.000 Effective Embedment depth, hef (inch): 2.970 Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No h_{min} (inch): 6.00 c_{ac} (inch): 4.50 Cmin (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: Titen HD® - 5/8"Ø Titen HD (THDB model), hnom:4" (102mm) Code Report: ICC-ES ESR-2713

Project description: Location: Fastening description:

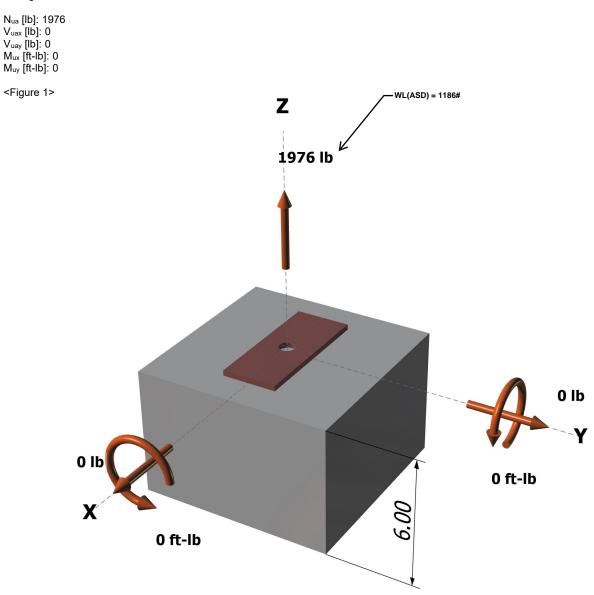
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 6.00 State: Cracked Compressive strength, f'_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 6.00 x 2.50 x 0.25

10/15

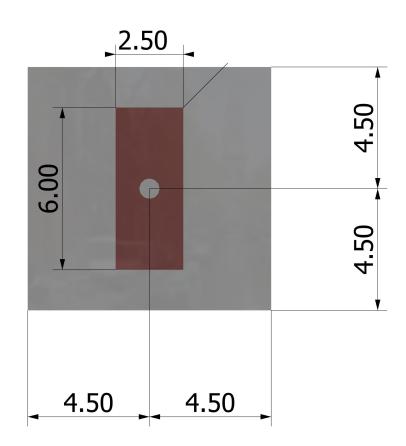

SIMPSON Anchor Designer™ Strong-Tie Software Version 2.8.7094.1

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019
Engineer:		Page:	2/5
Project:			
Address:	310 5TH STREET		
Phone:	(541) 746-0637		
E-mail:	JOSHA@BRANCHENGINEERIN	G.COM	

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:



Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

11/15

BRANCH ENGINEERING, INC. 10/21/2019 Anchor Designer™ Company: Date: SIMPSON Engineer: Page: 3/5 Software Project: Strong-Tie Version 2.8.7094.1 Address: 310 5TH STREET Phone: (541) 746-0637 JOSHA@BRANCHENGINEERING.COM E-mail:

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

1	2/1	5
---	-----	---

				Composi	PRANCU			Detei	10/21/2010	
SIMPS	ON Anch	hor Design	er™	Company:	BRANCH	ENGINEERING	, INC.	Date:	10/21/2019 4/5	
CL	Soft	ware		Engineer:				Page:	4/3	
Strong		n 2.8.7094.1		Project: Address:	210 5711	OTDEET				
	®			Address: Phone:	310 5TH (541) 746					
				E-mail:	· · ·		GINEERING.COM			
				L-mail.	1001170			5.00101		
3. Resultin	g Anchor Ford	<u>ces</u>								
Anchor		ension load,		ar load x,	Shear lo	ad y,		r load co		
		a (lb)	Vuax	(ID)	V _{uay} (lb)			$(V_{uay})^2$	(ID)	
1		976.0	0.0		0.0		0.0			
Sum	19	976.0	0.0		0.0		0.0			
Resultant ter Resultant co Eccentricity	ncrete compres nsion force (lb): mpression force of resultant tens	e (lb): 0 sion forces in x-a): 0 ixis, e' _{Nx} (inch):		<figu< th=""><th>re 3></th><th></th><th></th><th></th></figu<>	re 3>				
Resultant ter Resultant co Eccentricity	ncrete compres nsion force (lb): mpression force of resultant tens	ssion stress (psi) 1976 e (lb): 0): 0 ixis, e' _{Nx} (inch):		<figu< th=""><th>re 3></th><th>×</th><th>↓ Y ►</th><th></th></figu<>	re 3>	×	↓ Y ►		
Resultant tel Resultant co Eccentricity Eccentricity	ncrete compres nsion force (lb): mpression force of resultant tens of resultant tens	ssion stress (psi) 1976 e (lb): 0 sion forces in x-a): 0 µxis, e' _{Nx} (inch): µxis, e' _{Ny} (inch):		<figu< td=""><td>re 3></td><td>×</td><td>↓ ¥ ▼</td><td></td></figu<>	re 3>	×	↓ ¥ ▼		
Resultant tel Resultant co Eccentricity Eccentricity 4. Steel Str <i>Nsa</i> (Ib)	oncrete compression force (Ib): mpression force of resultant tens of resultant tens of resultant tens	ssion stress (psi) 1976 e (lb): 0 sion forces in x-a sion forces in y-a <u>or in Tension (</u> <i>φN₅</i> (lb)): 0 µxis, e' _{Nx} (inch): µxis, e' _{Ny} (inch):		<figu< th=""><th>re 3></th><th>×</th><th>↓ ¥ ▼</th><th></th></figu<>	re 3>	×	↓ ¥ ▼		
Resultant tel Resultant co Eccentricity Eccentricity	ncrete compres nsion force (lb): mpression force of resultant tens of resultant tens	ssion stress (psi) 1976 e (Ib): 0 sion forces in x-a sion forces in y-a or in Tension (): 0 µxis, e' _{Nx} (inch): µxis, e' _{Ny} (inch):		<figu< td=""><td>re 3></td><td>×</td><td>↓ Y ►</td><td></td></figu<>	re 3>	×	↓ Y ►		
Resultant tel Resultant co Eccentricity of Eccentricity of A. Steel Stro Nsa (Ib) 30360	ength of Anch ϕ 0.65	ssion stress (psi) 1976 e (lb): 0 sion forces in x-a sion forces in y-a <u>or in Tension (</u> <u><i>φ</i>N₅a (lb) 19734</u>): 0 Ixis, e' _№ (inch): Ixis, e'№ (inch): <u>Sec. D.5.1)</u>	0.00	<figu< td=""><td>re 3></td><td>X</td><td>↓ ¥ ▼</td><td></td></figu<>	re 3>	X	↓ ¥ ▼		
Resultant tel Resultant co Eccentricity of Eccentricity of A. Steel Stro Nsa (Ib) 30360 5. Concrete	ength of Anch ϕ 0.65 Breakout Stree	ssion stress (psi) 1976 e (lb): 0 sion forces in x-a sion forces in y-a <u>or in Tension (</u> <i>φN₅</i> (lb)): 0 Ixis, e' _№ (inch): Ixis, e'№ (inch): <u>Sec. D.5.1)</u>	0.00	<figu< td=""><td>re 3></td><td>×</td><td>↓ ¥ ▼</td><td></td></figu<>	re 3>	×	↓ ¥ ▼		
Resultant tel Resultant co Eccentricity of Eccentricity of A. Steel Strong Nsa (Ib) 30360 5. Concrete Nb = $k_c \lambda_a \sqrt{f'_c}$	encrete compression force (Ib): mpression force of resultant tens of resultant tens of resultant tens ϕ 0.65 Breakout Stre $h_{ef}^{1.5}$ (Eq. D-6)	ssion stress (psi) 1976 e (lb): 0 sion forces in x-a sion forces in y-a or in Tension (<i>φ</i> Nsa (lb) 19734 ength of Ancho): 0 xis, e' _№ (inch): xis, e' _№ (inch): <u>Sec. D.5.1)</u> 	0.00 (Sec. D.5.2)	<figu< td=""><td>re 3></td><td>X</td><td>¥ ¥</td><td></td></figu<>	re 3>	X	¥ ¥		
Resultant tel Resultant co Eccentricity of Eccentricity of A. Steel Stro Nsa (Ib) 30360 5. Concrete	ength of Anch ϕ 0.65 Breakout Stree	ssion stress (psi) 1976 e (lb): 0 sion forces in x-a sion forces in y-a <u>or in Tension (</u> <u><i>φ</i>N₅a (lb) 19734</u>): 0 Ixis, e' _{Nx} (inch): Ixis, e' _{Ny} (inch): <u>Sec. D.5.1)</u>	0.00	<figu< td=""><td>re 3></td><td>X</td><td>↓ ¥ ▼</td><td></td></figu<>	re 3>	X	↓ ¥ ▼		
Resultant tel Resultant co Eccentricity of Eccentricity of Msa (Ib) 30360 5. Concrete $N_b = k_c \lambda_a \sqrt{f'c}$ k_c 17.0	ength of Anch ϕ 0.65 Breakout Stre $h_{ef}^{1.5}$ (Eq. D-6) λ_a 1.00	ssion stress (psi) 1976 $e_{\rm (lb):} 0$ sion forces in x-a sion forces in y-a ϕ N ₅₀ (lb) 19734 ength of Ancho f'_c (psi) 2500): 0 Ixis, e' _{Nx} (inch): Ixis, e' _{Ny} (inch): Sec. D.5.1) Dr in Tension her (in) 2.970	0.00 (Sec. D.5.2) N₀ (lb) 4351	<figu< td=""><td>re 3></td><td>×</td><td>↓ ¥ ▼</td><td></td></figu<>	re 3>	×	↓ ¥ ▼		
Resultant tel Resultant co Eccentricity of Eccentricity of Msa (Ib) 30360 5. Concrete $N_b = k_c \lambda_a \sqrt{f'c}$ k_c 17.0	ength of Anch ϕ 0.65 Breakout Stre $h_{ef}^{1.5}$ (Eq. D-6) λ_a 1.00	ssion stress (psi) 1976 e (lb): 0 sion forces in x-a sion forces in y-a or in Tension (ϕN_{ss} (lb) 19734 ength of Ancho f'_c (psi)): 0 Ixis, e' _{Nx} (inch): Ixis, e' _{Ny} (inch): Sec. D.5.1) Dr in Tension her (in) 2.970	0.00 (Sec. D.5.2) N₀ (lb) 4351	<figu — Ψ_{σρ,N}</figu 	re 3> <i>N</i> ₀ (lb)	φ	↓ ¥ ▼	<i>φNcb</i> (Ib)	

Ψc,P	λa	N _P (lb)	f'c (psi)	n	ϕ	ϕN_{pn} (Ib)	
1.0	1.00	3040	2500	0.50	0.65	1976	

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

13/15

Anchor Designer™ Software Version 2.8.7094.1

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019
Engineer:		Page:	5/5
Project:			
Address:	310 5TH STREET		
Phone:	(541) 746-0637		
E-mail:	JOSHA@BRANCHENGINEERING	G.COM	

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1976	19734	0.10	Pass
Concrete breakout	1976	2828	0.70	Pass
Pullout	1976	1976	1.00	Pass (Governs)

5/8"Ø Titen HD (THDB model), hnom:4" (102mm) meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Since 1977 310 5th Street civil • transportation structural • geotechnical SURVEYING SURVEYING DATE: 2/18/2020

PROJECT: 18-220 WOODSTONE STRUCTURES BY: JOSHUA ANNETT CHECKED BY: RICK HERNANDEZ, P.E., S.E. SHEET: Fasteners (POST BASE) FASTENER LATERAL DESIGN VALUES

							ALLOWABLE LA VAL							
	QTY	FASTENER DIAMETER	ТҮРЕ	SINGLE/ DOUBLE SHEAR	STEEL SIDE MEMBER THICKNESS	MAIN MEMBER	PARALLEL TO GRAIN	PERP. TO GRAIN	PENETRATION LENGTH INTO MAIN MEMBER, p	p/8D	LOAD DURATION FACTOR, CD	WET SERVICE FACTOR, CM		
	2	0.5	BOLT	DOUBLE	0.25	3.5	1650		THRU	1	1.6	0.7	3696	
				CRITICAL EDGE DIST, cac	EFFECTIVE EMBEDMENT DEPTH, hef	EFFECTIVENES S FACTOR, k	MODIFICATIO N FACTOR, ψcN	Фсb	Anc	Anco	BASIC CONCRETE BREAKOUT, Nb	CONCRETE BREAKOUT STRENGTH, ØcbNcb	PULLOUT STRENGTH, ΦρΝρ	STEEL STRENGTH, ФsaNsa
_	4	0.25	CONC SCREW	3	1.3	24	1	0.65	15.21	15.21	1778.674	4625 MIN WL = 4	4940 625# * 0.6 = 2	5655 775#

THE INFORMATION BELOW IS NOT A PART OF THIS REPORT - INCLUDED FOR REFERENCE ONLY.

NDS TABLE 12G

-								
Thick	ness							Б
Main Member	Side Member	Bolt Diameter	G=0.67 Red Oak		G=0.55 Mixed Maple Southern Pine		G=0.50 Douglas Fir-Larch	
t _m	ts	D	ZII	Z⊯	ZII	Zᡎ	ZII	Z
in.	in.	in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
		1/2	1870	1240	1720	1100	1650	1030
		5/8	2740	1720		1420	2410	1230
	1/4	3/4	3800	2070	3480	1550	3340	1370
3-1/2	1/4	5/4	0000					
3-1/2	1/4	7/8		2240		1680	4290	1470
3-1/2	1/4		5060		4630 5380	1790	4290 4900	1470 1580

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)	
Unaracteristic			∛ 16	1/4
Anchor Category	1, 2 or 3	_	1	I
Embedment Depth	h _{nom}	in.	1¾	1¾
Stee	Strength in Tensio	n		
Tension Resistance of Steel	N _{sa}	lb.	2,175	3,175
Strength Reduction Factor — Steel Failure	ϕ_{sa}	—	0.652	
Concrete Br	eakout Strength in	Tension ⁶		
Effective Embedment Depth	h _{ef}	in.	1.30	1.30
Critical Edge Distance	Cac	in.	3	3
Effectiveness Factor — Uncracked Concrete	kuncr	_	24	
Modification Factor	$\Psi_{c,N}$		1.0	
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_	0.6	35 ³
Pullou	t Strength in Tensio	on ⁶		
Pullout Resistance Uncracked Concrete (f'c = 2,500 psi)4	N _{p,uncr}	lb.	1,900	1,900
Strength Reduction Factor — Pullout Failure	ϕ_{D}	_	0.655	

USE 3/16" SCREW VALUES DUE TO _____

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)	
			¥16	
	Installation Informati	on		
Drill Bit Diameter	d	in.	95e	¥16
Minimum Baseplate Clearance Hole Diameter	d _c	in.	1/4	5/16
Minimum Hole Depth	h _{hole}	in.	21/4	21/4
Embedment Depth	hnom	in.	1%	1%
Effective Embedment Depth	h _{ef}	in.	1.30	1.30
Critical Edge Distance	Cac	in.	3	3
Minimum Edge Distance	Cmin	in.	1¾	1%
Minimum Spacing	Smin	in.		2
Minimum Concrete Thickness	h _{min}	in.	31/4	31⁄4
	Additional Data			
Yield Strength	f _{ya}	psi	100,000	
Tensile Strength	f _{uta}	psi	125,000	
Minimum Tensile and Shear Stress Area	Ase	in.2	0.017	0.025

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

 Civil · transportation
 Springfield, Oregon 97477

 Structural · geotechnical
 SURVEYING

DATE: 2/18/2020

PROJECT: 18-220 WOODSTONE STRUCTURES BY: JOSHUA ANNETT CHECKED BY: RICK HERNANDEZ, P.E., S.E. SHEET: Capacity Summary

SHEET: Capaci FASTENER LATERAL DESIGN VALUES

		ALLOWABLE	ALLOWABLE		
		WIND UPLIFT	WIND UPLIFT		
		LOAD w/ (1)	LOAD w/ (4)		
		ANCHOR AT	ANCHORS AT		
	COMPONENT	CENTER	EQ SPACING		
THRU-	BOLTS IN WOOD COLUMN	3696	3696		
	CONCRETE ANCHOR	1186	2775		
	STEEL ASSEMBLY	690	1116	CONTROLS DESIGN	
	BOLT HOLES IN STEEL	9543	9543	—	
SIDE-PLATE TO	BASEPLATE CONNECTION	5085	5085		