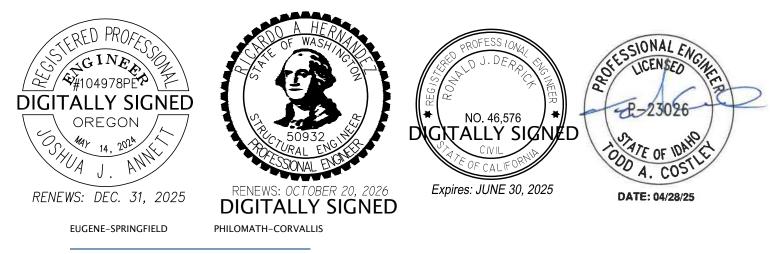
STRUCTURAL CALCULATIONS

DATE:	May 5, 2025	
PROJECT: 18-220	PB44 POST BASE	
BY:	TAYLOR WASHINGTON	
CHECKED BY:	JOSHUA ANNETT, P.E.	(OR)
	RICK HERNANDEZ, P.E., S.E.	(WA)
	RON DERRICK, P.E.	(CA)
	TODD COSTLEY, P.E.	(ID)
FOR:	PATIO ROOF RISER	

PROJECT DESCRIPTION & SCOPE OF SERVICES:

Structural design in accordance with the 2021 International Building Code (IBC) for the above referenced project as follows:

Wood Fastener Connection Analysis	Steel Assembly Analysis
Concrete Anchor Analysis	


Should conditions differ from those depicted in this report or accompanying drawings, contact this office for further direction. The analyses contained herein are for the Post Base, included fasteners, and specified concrete anchors only. Branch Engineering, Inc. has not reviewed any framing or foundation elements for any structure considered to be supporting the above referenced product and/or any connected roof elements.

SPECIAL INSPECTION:

None

NOTES:

Analysis based upon measurements taken from Post Base assembly, supplied by Patio Roof Riser. No analysis of supporting structure or supporting framing has been conducted in conjunction with this report. Consult a local Engineer for each individual installation scenario. See additional notes below "PB Allowable Loads" table.

STRUCTURAL ENGINEERING REPORT

DATE:	May 2, 2025
PROJECT:	18–220 PB44 POST BASE
CLIENT:	PATIO ROOF RISER
REPORT BY:	BRANCH ENGINEERING, INC.

POST BASE BRACKET (PB44)

DESCRIPTION:

This structural engineering report has been requested by Patio Roof Riser for preliminary analysis of a proprietary product called, "PB44 Post Base." The objective of this analysis is to report the allowable capacity of the product, in its current configuration, for use in supporting vertical loading in both the downward direction and in uplift. ASSUMED MATERIAL:

(1) POST BASE BRACKET - 1/4" ASTM A36

(2) 1/2" DIA. ASTM A307 BOLT (NOT SUPPLIED)

OR (12) ¼"x2½" SIMPSON SDS SCREWS (NOT SUPPLIED)

(2) 3/8" DIA. TITEN HD CONCRETE ANCHORS. See Notes 16 & 17. (NOT SUPPLIED)

OR (4) 1/4" DIA. TITEN HD CONCRETE ANCHORS (NOT SUPPLIED)

(4) ¼" STANDARD WASHERS (NOT SUPPLIED)

POST – SPECIES PER TABLE (NOT SUPPLIED)

SUPPLIED) COMPOSITE STANDOFF BLOCK FOR DOWNLOAD & PROTECTION FOR END OF POST THRU-BOLTS SECURE ASSEMBLY TOGETHER &

PB44 BRACKET

PB44 ALLOWABLE LOADS

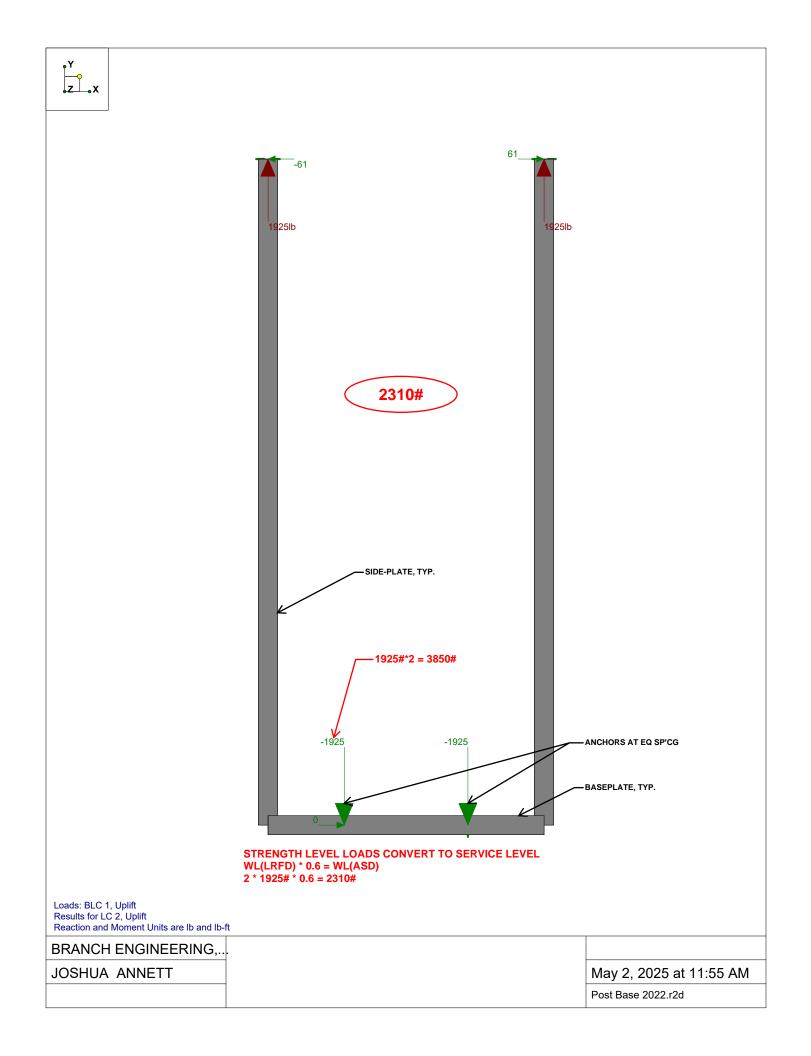
MODEL No.	POST SIZE ¹⁶ (NOM.)	-	SIDE-PLATE THICKNESS	FASTENER TO	MIN CONC. THICKNESS (in)	MIN. EMBED (in)	SIDE-PLATE FASTENER	DOWNLOAD (100)	DF/SP/HF UPLIFT (160) (lb)
PB44	4x4 or 4x6	1/4"	1/4"	(4) 1/4" TITEN HD	3.5"	2 1/2"	(2) 1/2" BOLTS	8045	1462
PB44	4x4 or 4x6	1/4"	1/4"	(4) 3/8" TITEN HD	5	3 1/4"	(2) 1/2" BOLTS	8045	1869
PB44	4x4 or 4x6	1/4"	1/4"	(4) 1/4" TITEN HD	3.5"	2 1/2"	(6) SDS SCREWS	8045	1462
PB44	4x4 or 4x6	1/4"	1/4"	(4) 3/8" TITEN HD	5	3 1/4"	(6) SDS SCREWS	8045	1869

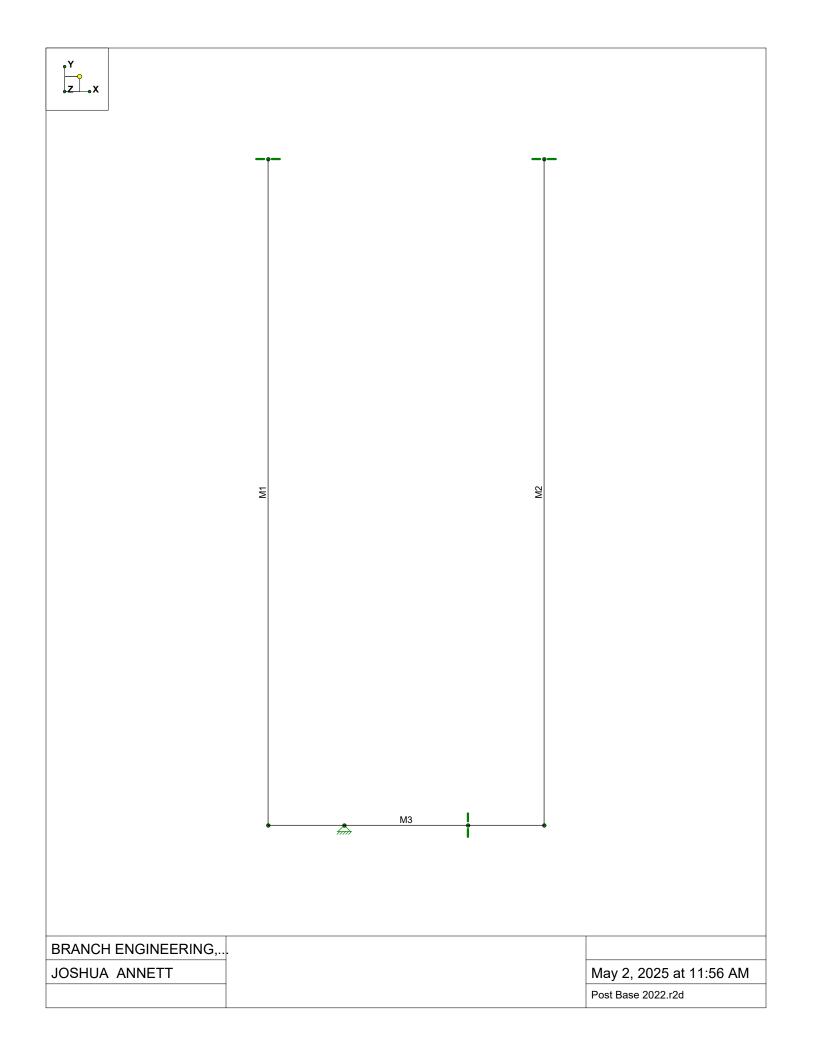
NOTES:

9

- 1. THE ABOVE STATED ALLOWABLE LOADS ASSUME WOOD POST SPECIES HEM−FIR OR BETTER (i.e. G≥0.43) EXCEPT FOR SDS SCREWS WHERE G≥0.50.
- 2. DOWNLOADS SHALL BE REDUCED WHERE LIMITED BY CAPACITY OF THE POST OR FOUNDATION.
- 3. ALLOWABLE LOADS SHOWN ARE FOR A SINGLE PB44 INSTALLED ON A CONCRETE BASE HAVING AT LEAST THE ABOVE STATED THICKNESS.
- 4. ANALYSIS AND ALLOWABLE LOADS ARE FOR THE STEEL BRACKET, INCLUDED BOLTS, AND SPECIFIED CONCRETE ANCHORS ONLY.
- 5. CONSULT WITH A LOCAL ENGINEER FOR EACH INDIVIDUAL INSTALLATION.
- 6. NO DESIGN OF SUPPORTING OR SUPPORTED FRAMING OR FOUNDATION HAS BEEN CONDUCTED. CONSULT AN INDEPENDENT ENGINEER FOR DESIGN OF SUCH FRAMING OR FOUNDATION.
- 7. UPLIFT LOADS HAVE BEEN INCREASED FOR WIND OR SEISMIC LOADING, WITH NO FURTHER INCREASE ALLOWED.
- 8. ALLOWABLE LOADS ARE FOR VERTICAL LOADS ONLY. LATERAL BRACING MUST BE SUPPLIED BY OTHER LATERAL FORCE RESISTING SYSTEMS DESIGNED BY OTHERS. LATERAL BRACING SYSTEMS MUST BE INDEPENDENT FROM THE PB44 BRACKET & POSTS.
 - ALLOWABLE LOADS SHOWN ARE FOR WET-SERVICE CONDITIONS (MOISTURE CONTENT >19%). NO INCREASE ALLOWED FOR DRY-SERVICE.
- 10. PROVIDE THE FOLLOWING MINIMUMS FOR BOLTS THRU WOOD POST & STEEL PLATE:
 - a. EDGE DISTANCE = EDGE OF BRACKET TO CENTERLINE OF THE THRU-BOLT POST EACH WAY.
 - b. END DISTANCE \ge 3 ½ INCHES (END OF POST TO CENTER OF FIRST THRU-BOLT)
- 11. PROVIDE THE FOLLOWING MINIMUMS FOR TITEN HD CONCRETE ANCHORS TO ANY EDGE OF SUPPORTING CONCRETE ELEMENT:
 - a. 1/4" DIA. ANCHOR EDGE DISTANCE = 6 INCHES ALL AROUND.
 - b. 3/8" DIA. ANCHOR EDGE DISTANCE = 4 INCHES ALL AROUND.
- 12. BOLT HOLES SHALL BE A MINIMUM OF 1/32" AND A MAXIMUM OF 1/16" LARGER THAN THE BOLT DIAMETER (PER NDS SEC. 12.1.3.2)
- 13. POST & PB44 ARE ASSUMED TO BE INSTALLED IN A VERTICALLY PLUMB POSITION WITH POST BEING LOADED CONCENTRICALLY ABOUT ITS CENTER EACH WAY.
- 14. BASEPLATE MAY EXPERIENCE INELASTIC YIELDING AT THE ABOVE STATED UPLIFT CAPACITY. SUBSEQUENT REPLACEMENT MAY BE REQUIRED.
- 15. THE ABOVE-STATED ALLOWABLE UPLIFT LOADS APPLY TO WIND UPLIFT ONLY. CONSULT LOCAL BUILDING CODES FOR REQUIRED REDUCTION DUE TO LOAD COMBINATIONS INCLUDING OVERSTRENGTH FACTOR, WHERE UPLIFT IS DUE TO SEISMIC LOADING.
- 16. THE PB BASE HAS FOUR HOLES ARRANGED IN A RECTANGULAR PATTERN. FOR INSTALLATIONS UTILIZING (2) 3/8" TITEN HD CONCRETE ANCHORS, ANCHORS MUST BE INSTALLED IN TWO PRE-DRILLED HOLES ARRANGED DIAGONALLY FROM EACH OTHER TO ENSURE PROPER STABILITY AND THE STATED ALLOWABLE LOADS. DO NOT USE TWO HOLES THAT ARE ADJACENT TO EACH OTHER IN EITHER DIRECTION. (HOLE COMBINATION 1–4 OR 2–3)
- 17. (2) 3/8" DIA. TITEN HD CONCRETE ANCHOR IS THE RECOMMENDED ANCHORING METHOD. 1/4" DIA. TITEN HD CONCRETE ANCHORS MAY REQUIRE WASHERS.

EUGENE-SPRINGFIELD PHILOMATH-CORVALLIS


PORT ENGINEE


PRE-DRILLED HOLES

RESIST UPLIFT (NOT SHOWN)

structural · geotechnical SURVEYING

UPLIF

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[lb/ft^3]	Yield[ksi]
1	A36 Gr.36	29000	11154	0.3	0.65	490	36

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [in2]	l (90,270) [i	<u>I (0,180) [in4]</u>
1	SIDE PL	PL1/4x2.75	Beam	None	A36 Gr.36	Typical	0.688	0.004	0.433
2	HR2	PL1/4x1.25	Beam	None	A36 Gr.36	Typical	0.312	0.002	0.041
3	BASEPLATE	PL1/4x2.75	Beam	None	A36 Gr.36	Typical	0.688	0.004	0.433

Member Primary Data

	Label	I Joint	J Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N2	90	SIDE PL	Beam	None	A36 Gr.36	Typical
2	M2	N3	N4	90	SIDE PL	Beam	None	A36 Gr.36	Typical
3	M3	N2	N4	90	BASEPLATE	Beam	None	A36 Gr.36	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rati	TOM	Inactive
1	M1						Yes			
2	M2						Yes			
3	M3						Yes			

Hot Rolled Steel Design Parameters

	Label	Shape	Length[. Lb-out[in]	Lb-in[in]	Lcomp top	Lcomp bot	L-torg	K-out	K-in	Cb	Chan	a[in]	Functi
1	M1	SIDE PL	8.75			Lb out	•					N/A	N/A	Lateral
2	M2	SIDE PL	8.75			Lb out						N/A	N/A	Lateral
3	M3	BASEPLA	3.625			Lb out						N/A	N/A	Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
1	Uplift	WĽ			2		

Load Combinations

	Description	Sol.	PD	.SRE	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact								
1	LRFD																							
2	Uplift		Y	\ \	NL	1																		

Joint Loads and Enforced Displacements (BLC 1 : Uplift)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (Inactive
1	N1	L	Y	1925	
2	N3	L	Y	1925	

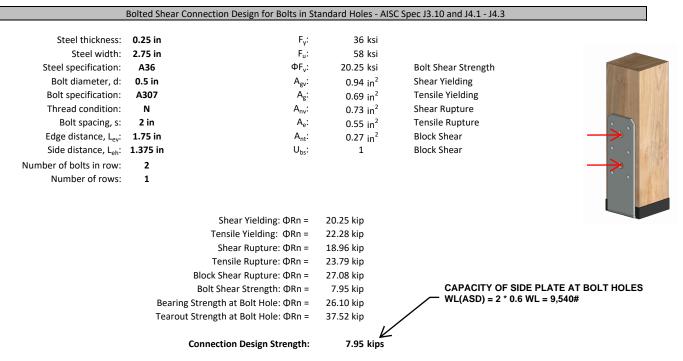
Member AISC 15th (360-16): LRFD Steel Code Checks (By Combination)

1 2 M1 PL1/4x2.75 0.427 8.75 0.005 8.75 10274.348 22275 116.016 1 H1-1 2 2 M2 PL1/4x2.75 0.427 8.75 0.005 8.75 10274.348 22275 116.016 1 H1-1		LC	Member	Shape	UC Max	Loc[in]	Shear UC	Loc[in]	phi*Pnc[lb]	phi*Pnt[lb]	phi*Mn[lb-ft]	Cb	Egn
2 2 M2 PL1/4x2.75 0.427 8.75 0.005 8.75 10274.348 22275 116.016 1 H1-1	1	2	M1	PL1/4x2.75	0.427	8.75	0.005	8.75	10274.348	22275	116.016	1	H1-1b
	2	2	M2	PL1/4x2.75	0.427	8.75	0.005	8.75	10274.348	22275	116.016	1	H1-1b

:

Member AISC 15th (360-16): LRFD Steel Code Checks (By Combination) (Continued)

_		LC	Member	Shape	UC Max	Loc[in]	Shear UC	Loc[in]	phi*Pnc[lb]	phi*Pnt[lb]	phi*Mn[lb-ft]	Cb	Eqn
	3	2	M3	PL1/4x2.75	1	2.605	0.144	3.625	19504.654		116.016	1	H1-1b
_	UC<1.0 = OK!												


Since 1977 310 5th Street

DATE: 5/2/2025

PROJECT: 18-220.2 WOODSTONE STRUCTURES

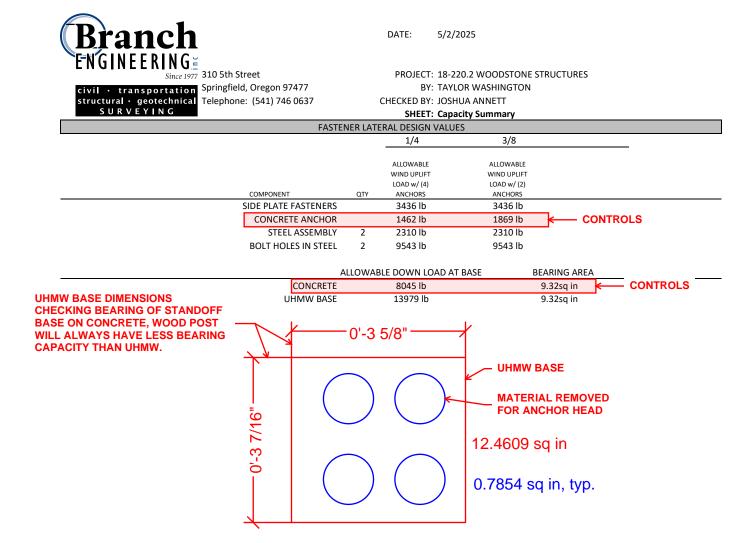
civil • transportation Springfield, Oregon 97477 structural • geotechnical Telephone: (541) 746 0637 S U R V E Y I N G

BY: RICK HERNANDEZ

Since 1977 310 5th Street civil • transportation structural • geotechnical S U R V E Y I N G DATE: 5/2/2025

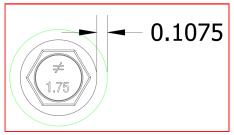
PROJECT: 18-220.2 WOODSTONE STRUCTURES BY: TAYLOR WASHINGTON

CHECKED BY: JOSHUA ANNETT


SHEET: Fasteners (Post Base) FASTENER LATERAL DESIGN VALUES

						ALLOWABLE LAT		_					
								PENETRATION					TOTAL
			SINGLE/	STEEL SIDE				LENGTH INTO		LOAD		GROUP	ADJUSTED
	FASTENER		DOUBLE	MEMBER		PARALLEL TO	PERP. TO	MAIN		DURATION	WET SERVICE	ACTION	ALLOWABLE
 QTY	DIAMETER	TYPE	SHEAR	THICKNESS	MAIN MEMBER	GRAIN	GRAIN	MEMBER, p	p/8D	FACTOR, CD	FACTOR, CM	FACTOR	SHEAR, Z'
2	0.5	BOLT	DOUBLE	0.25	3.5	1540		THRU	1	1.6	0.7	0.996	3436
6	0.25	SDS	SINGLE	0.25	3.5	420			1	1.6	1		4032
7	USING (3)												
	03140 (3)	EA. SIDE	FUNCA	LC							CONCRETE		
			CRITICAL	EFFECTIVE							BREAKOUT	PULLOUT	STEEL
			EDGE DIST,	EMBEDMENT							STRENGTH,	STRENGTH,	STRENGTH,
			cac	DEPTH, hef							ΦcbNcb	ФрNр	ФsaNsa
		CONC											
4	0.25	SCREW	1.5	1.94						-	2437	4952	13508
		CONC					SEE AN	CHOR DES	IGNS				
2	0.375	SCREW	1.75	2.40			AT END	OF DOCUM	IENT	~	3115	3510	14158

INFORMATION SHOWN HERE IS NOT A PART OF THIS REPORT AND HAS BEEN INCLUDED HERE FOR REFERENCE ONLY


ESR-2236		ICC-ES' Mo	st Widely Accepted and Trus	ted		Page 7 of 1	
TABLE 2—REFERENCE LATERAL DESIGN VALUES (Z) FOR SINGLE SHEAR STEEL-TO-WOOD CONNECTIONS WITH SDS SCREWS ^{1,2,5,6,7,8}							
		STEEL SI	DE MEMBER DESI	GN THICKNESS ^{3, 4} ,	ts (inches)		
SCREW LENGTH (inches)	0.0584 (No. 16 gage)	0.0721 (No. 14 gage)	0.1026 (No. 12 gage)	0.1342 (No. 10 gage)	0.1795 (No. 7 gage)	0.2405 (No. 3 gage)	
	Lateral Design Value (Z) (Ibf)						
1 ¹ /2	250	250	250	250	250	250	
1 ³ /4	250	250	250	250	250	250	
2	250	290	290	290	290	290	
2 ¹ / ₂	250	390	390	420	420	420	
3	250	420	420	420	420	420	
3 ¹ / ₂	250	420	420	420	420	420	
4 ¹ / ₂	250	420	420	420	420	420	
5	250	420	420	420	420	420	
6	250	420	420	420	420	420	
8	250	420	420	420	420	420	

For SI: 1 inch = 25.4 mm 1 lhf = 4.45 N 1 ksi = 6.80 MPs

BEARING AREA = 12.46SQ IN - 4 * 0.79 SQ IN = 9.32 SQ. IN

(0.65)(0.85)(2500)(9.32) = 12,873 LB FACTORED BEARING CAPACITY - CONCRETE 12,873 / 1.6 = 8045 MINIMUM SERVICE BEARING CAPACITY. (USE UHMW AREA AS CONSERVATIVE APPROXIMATION OF STEEL BEARING AREA).

SKETCH OF 3/8" ANCHOR IN 1" DIA HOLE AT UHMW BASE

(3000)(9.32) LB = 27960 LB FACTORED BEARING CAPACITY - UHMW 27,960 / SF=2 = 13,980 LB

INFORMATION SHOWN HERE IS NOT A PART OF THIS REPORT AND HAS BEEN INCLUDED HERE FOR REFERENCE ONLY $UHMW_{\circledast}\ Material\ Specifications$

UHMW^{*} is the ideal material for many wear parts in machinery and equipment. Polyethylenes are semi-crystalline materials with excellent chemical resistance, good fatigue and wear resistance, and a wide range of properties.

Physical Properties	Units	Test	UHMW*	
Density	lb/in ³	D792	0.034	
	g/cm ³		0.93	
Water Absorption, 24 hrs.	%	D570	< 0.01	
Mechanical Properties	Units	Test	UHMW*	
Tensile Strength	@ 72ºF psi	D638	5800	
Tensile Strength	@ 150ºF psi	D638	400	
Tensile Modules	psi	D638	80,000	
Tensile Elongation at Break	%	D638	300	
Flexural Strength at Yield	psi	D790	3500	
Flexural Modulus	psi	D790	88,000	
Compressive Strength	psi	D695	3000	
Compressive Modulus	psi	D695	80,000	
Shear Strength	psi	D732	3000	

Anchor Designer™ for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025	
Engineer:		Page:	1	
Project:	18-220.2			
Address:	310 5TH STREET			
Phone:	(541) 746-0637			
E-mail:	TAYLORW@BRANCHENGINEERING.COM			

1.Project information

Project description: Location: Design name: Design

2. Input Data & Anchor Parameters

General Design method:ACI 318-19 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.250 Nominal Embedment depth (inch): 2.500 Effective Embedment depth, h_{ef} (inch): 1.940 Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No h_{min} (inch): 3.50 c_{ac} (inch): 6.00 C_{min} (inch): 1.50 Smin (inch): 1.50

Recommended Anchor

Anchor Name: Titen HD® - 1/4"Ø THD, hnom:2.5" (64mm) Code Report: ICC-ES ESR-2713

Comment:

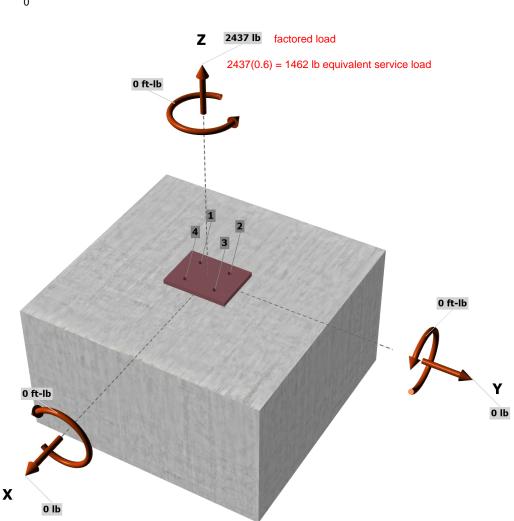
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 8.00 State: Cracked Compressive strength, f'c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental edge reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 2.75 x 3.62 x 0.25

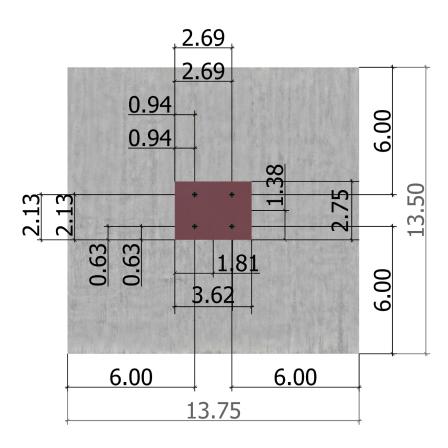
Anchor Designer[™] for Concrete Software Version 3.3.2410.2


Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025	
Engineer:		Page:	2	
Project:	18-220.2			
Address:	310 5TH STREET			
Phone:	(541) 746-0637			
E-mail:	TAYLORW@BRANCHENGINEERING.COM			

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

2437
0
0
0
0
0


<Figure 1>

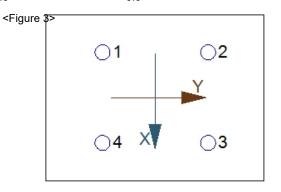
Anchor Designer™ for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025	
Engineer:		Page:	3	
Project:	18-220.2			
Address:	310 5TH STREET			
Phone:	(541) 746-0637			
E-mail:	TAYLORW@BRANCHENGINEERING.COM			

<Figure 2>

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (Ib)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (Ib)
1	612.8	0.0	0.0	0.0
2	604.5	0.0	0.0	0.0
3	605.7	0.0	0.0	0.0
4	614.0	0.0	0.0	0.0
Sum	2437.0	0.0	0.0	0.0


Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 2437

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.01 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

Anchor Designer™ for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025	
Engineer:		Page:	4	
Project:	18-220.2			
Address:	310 5TH STREET			
Phone:	(541) 746-0637			
E-mail:	TAYLORW@BRANCHENGINEERING.COM			

4. Steel Strength of Anchor in Tension (Sec. 17.6.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
5195	0.65	3377

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2)

<i>₀h_{ef}1.5</i> (Eq. 17.6	3.2.2.1)							
λa	f'c (psi)	<i>h</i> ef (in)	N _b ((lb)				
1.00	2500	1.940	229)7				
vc / ANco) Ψec,N 4	$\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}N$	₀ (Sec. 17.5.1.2	2 & Eq. 17.6	.2.1a)				
A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cbg} (lb)
33.87	6.00	0 998	1 000	1.00	1 000	2297	0.65	2437
	λ _a 1.00 _{Nc} / A _{Nco}) Ψ _{ec,N} Ψ A _{Nco} (in ²)	1.00 2500 Nc / ANco) Уес,N Уед,N Ус,N Уср,NNu ANco (in ²) С _{а,min} (in)		$\frac{\lambda_{a}}{1.00} \frac{f'_{c} (\text{psi})}{2500} \frac{h_{ef} (\text{in})}{1.940} \frac{N_{b}}{229} \frac{1}{229} \frac{1}{1.940} \frac{1}{229} \frac{1}{1.940} \frac{1}{229} \frac{1}{1.940} 1$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{\lambda_{a}}{1.00} \frac{f'_{c} \text{ (psi)}}{1.00} \frac{h_{ef} \text{ (in)}}{1.940} \frac{N_{b} \text{ (lb)}}{2297} $ $\frac{\lambda_{c}}{N_{c}} A_{Nco} \frac{\Psi_{ec,N}}{\Psi_{ec,N}} \frac{\Psi_{c,N}}{\Psi_{c,N}} \frac{\Psi_{c,N}}{\Psi_{ec,N}} \frac{\Psi_{c,N}}{\Psi_{c,N}} \frac{\Psi_{c,N}}{\Psi_{c,N}} \frac{\Psi_{c,N}}{\Psi_{c,N}} \frac{\Psi_{c,N}}{N_{b} \text{ (lb)}} \phi $

6. Pullout Strength of Anchor in Tension (Sec. 17.6.3)

$\phi N_{on} = \phi \Psi_{cP} \lambda_a N_o (f'_c / 2.500)^n ($	(Sec. 17.5.1.2, Eq. 17.6.3.1 & Code Report	rt)
φ		· • /

$\Psi_{c,P}$	λa	N _p (lb)	f'₀ (psi)	n	ϕ	ϕN_{pn} (lb)
1.0	1.00	1905	2500	0.50	0.65	1238

Anchor Designer™ for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025		
Engineer:		Page:	5		
Project:	18-220.2				
Address:	310 5TH STREET				
Phone:	(541) 746-0637				
E-mail:	TAYLORW@BRANCHENGINEER	ING.COM	Л		

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.8)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status			
Steel	614	3377	0.18	Pass			
Concrete breakout	2437	2437	1.00	Pass (Governs)			
Pullout	614	1238	0.50	Pass			

1/4"Ø THD, hnom:2.5" (64mm) meets the selected design criteria.

STRENGTH VALUES USED IN CAPACITY CALCULATIONS. – MULTIPLY STEEL STRENGTH AND PULLOUT STRENGTH BY QTY OF ANCHORS

Anchor Designer™ for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025		
Engineer:		Page:	1		
Project:	18-220.2				
Address:	310 5TH STREET				
Phone:	(541) 746-0637				
E-mail:	TAYLORW@BRANCHENGINEER	RING.COM	N		

1.Project information

Project description: Location: Design name: Design

2. Input Data & Anchor Parameters

General Design method:ACI 318-19 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.375 Nominal Embedment depth (inch): 3.250 Effective Embedment depth, h_{ef} (inch): 2.400 Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No h_{min} (inch): 5.00 c_{ac} (inch): 3.63 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: Titen HD® - 3/8"Ø THD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713

Comment:

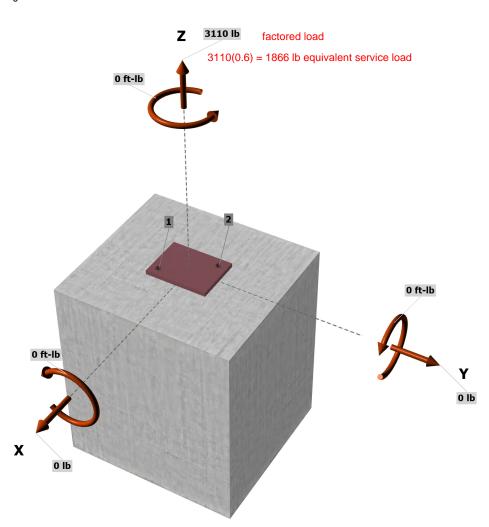
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f'c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental edge reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 2.75 x 3.62 x 0.25

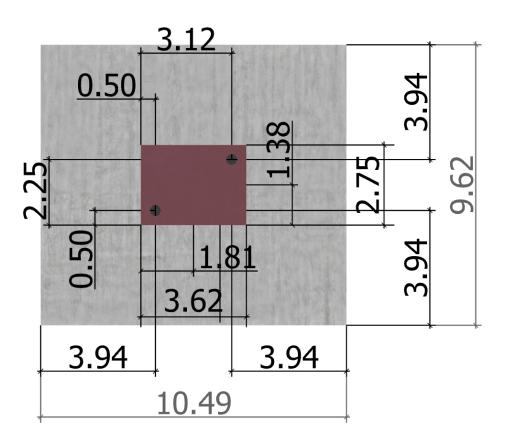
Anchor Designer[™] for Concrete Software Version 3.3.2410.2


Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025			
Engineer:		Page:	2			
Project:	18-220.2		-			
Address:	310 5TH STREET					
Phone:	(541) 746-0637					
E-mail:	TAYLORW@BRANCHENGINEEF	TAYLORW@BRANCHENGINEERING.COM				

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

3110
0
0
0
0
0


<figure <sup="">-</figure>	1>
----------------------------	----

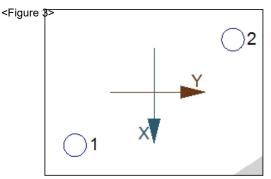
Anchor Designer™ for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025		
Engineer:		Page:	3		
Project:	18-220.2				
Address:	310 5TH STREET				
Phone:	(541) 746-0637				
E-mail:	TAYLORW@BRANCHENGINEER	ING.COM	Λ		

<Figure 2>

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1554.9	0.0	0.0	0.0
2	1561.6	0.0	0.0	0.0
Sum	3116.4	0.0	0.0	0.0


Maximum concrete compression strain (‰): 0.05

Maximum concrete compression stress (psi): 229

Resultant tension force (lb): 3116

Resultant compression force (lb): 6

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

Anchor Designer™ for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025			
Engineer:		Page:	4			
Project:	18-220.2					
Address:	310 5TH STREET					
Phone:	(541) 746-0637					
E-mail:	TAYLORW@BRANCHENGINEEF	TAYLORW@BRANCHENGINEERING.COM				

4. Steel Strength of Anchor in Tension (Sec. 17.6.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
10890	0.65	7079	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2)

N _b = k _c λ _a √t	^p chef ^{1.5} (Eq. 17.6	5.2.2.1)							
Kc	λa	f'c (psi)	<i>h</i> ef (in)	Nb	(lb)				
17.0	1.00	2500	2.400	316	60				
$\phi N_{cbg} = \phi (A$	Nc / ANCO) Yec,N	$\mathcal{V}_{ed,N} \mathcal{\Psi}_{c,N} \mathcal{\Psi}_{cp,N} \mathcal{N}_{b}$	ь (Sec. 17.5.1.2	2 & Eq. 17.6	.2.1a)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cbg} (lb)
78.72	51.84	3.94	0.999	1.000	1.00	1.000	3160	0.65	3115

6. Pullout Strength of Anchor in Tension (Sec. 17.6.3)

$\phi N_{pn} = \phi \Psi_{c,P} \lambda_a N_p (f'_c / 2,500)^n ($	Sec. 17.5.1.2. Eq.	. 17.6.3.1 & Code Report)
φ	ссс. нт.с.н. с , шч.	

$\Psi_{c,P}$	λa	N _p (lb)	f'c (psi)	n	ϕ	ϕN_{pn} (lb)
1.0	1.00	2700	2500	0.50	0.65	1755

Anchor Designer[™] for Concrete Software Version 3.3.2410.2

Company:	BRANCH ENGINEERING, INC.	Date:	4/11/2025
Engineer:		Page:	5
Project:	18-220.2		
Address:	310 5TH STREET		
Phone:	(541) 746-0637		
E-mail:	TAYLORW@BRANCHENGINEERING.COM		

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.8)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1562	7079	0.22	Pass
Concrete breakout	3116	3115	1.00	Pass (Governs)
Pullout	1562	1755	0.89	Pass
3/8"Ø THD hnom:3 25	" (83mm) meets the selecter	d design criteria		

3/8"Ø THD, hnom:3.25" (83mm) meets the selected design

STRENGTH VALUES USED IN **CAPACITY CALCULATIONS. STEEL STRENGTH AND PULLOUT STRENGTH VALUES** MULTIPLIED BY QTY ANCHORS