STRUCTURAL CALCULATIONS

DATE: May 26, 2022

PROJECT: 18-220 PB POST BASE

BY: JOSHUA ANNETT

CHECKED BY: RICK HERNANDEZ, P.E., S.E. (OR and WA)

RON DERRICK, P.E., (CA)

FOR: WOODSTONE STRUCTURES, LLC

PROJECT DESCRIPTION & SCOPE OF SERVICES:

Structural design in accordance with the 2012 International Building Code (IBC) for the above referenced project as follows:

Wood-Bolted Connection Analysis	Steel Assembly Analysis
Concrete Anchor Analysis	
·	

Should conditions differ from those depicted in this report or accompanying drawings, contact this office for further direction. The analyses contained herein is for the Post Base, included fasteners, and specified concrete anchors only. Branch Engineering, Inc. has not reviewed any framing or foundation elements for any structure considered to be supporting the above referenced product and/or the connected roof.

SPECIAL INSPECTION:

None

NOTES:

Analysis based upon measurements taken from Post Base bracket assembly, supplied by Woodstone Structures, LLC, October 2019.

No analysis of supporting structure or supporting framing has been conducted in conjunction with this report. Consult a local Engineer for each individual installation scenario.

See additional notes below "PB Allowable Loads" table.

Expires: JUNE 30, 2023

EUGENE-SPRINGFIELD

ALBANY

STRUCTURAL ENGINEERING REPORT

DATE: May 26, 2022

PROJECT: 18-220 PB POST BASE

CLIENT: **WOODSTONE STRUCTURES, LLC** REPORT BY: BRANCH ENGINEERING, INC.

POST BASE BRACKET (PB)

DESCRIPTION:

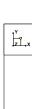
This structural engineering report has been requested by Woodstone Structures, LLC for preliminary analysis of a proprietary product called, "PB Post Base." The objective of this analysis is to report the allowable capacity of the product, in its current configuration, for use in supporting vertical loading in both the downward direction and in uplift. **ASSUMED MATERIAL:**

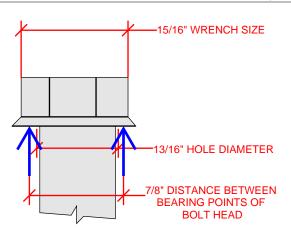
- (1) BASEPLATE 1/4" ASTM A36
- (2) SIDE-PLATES 1/4" ASTM A36
- (3) 1/2" DIA. ASTM A307 BOLT
- (1) 5/8" DIA. TITEN HD CONCRETE ANCHOR (NOT SUPPLIED) OR (4) 3/8" DIA. TITEN HD CONCRETE SCREW (NOT SUPPLIED) POST - SPECIES PER TABLE (NOT SUPPLIED)

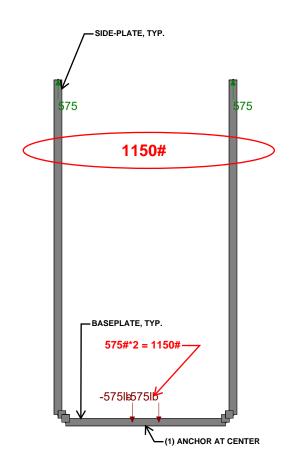
OPTIONS:

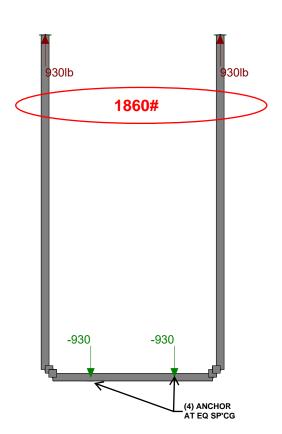
POST SIZE MAY VARY PER TABLE.

PB ALLOWABLE LOADS


PB SIDE-PLATES	UPLIFT	
(1) TITEN HD ANCHOR OR (4) TITEN SCREWS		
CONCRETE BASE (NOT SHOWN), TYP.		
PB BASEPLATE	800	
SIDE-PLATES SNUG-FIT TO BASEPLATE		
4X6 OR 6X6 POST	× 20	
THRU-BOLTS SECURE ASSEMBLY TOGETHER & RESIST UPLIFT	00000	A .
COMPOSITE STANDOFF BLOCK FOR DOWNLOAD & PROTECTION FOR END OF POST (NOT SHOWN)	A	4
	A 4	4


	MODEL & ANCHORAGE		BASEPLATE THICKNESS	7	EASTENIER TO	MIN CONC. THICKNESS	MIN. EMBED	SIDE-PLATE FASTENER	DF/SP/HF DOWNLOAD	DF/SP/HF UPLIFT (160)
					CONCRETE	(in)	(in)		(lb)	(lb)
ſ	PB w/ (1) ANCHOR BOLT AT CENTER	4x6 OR 6x6	1/4"	1/4"	(1) TITEN HD	6	4	(3) 1/2" BOLT	26114	690
	PB w/ (4) CONCRETE SCREWS	4x6 OR 6x6	1/4"	1/4"	(4) TITEN 2	3 1/4"	1 3/4"	(3) 1/2" BOLT	26114	1116

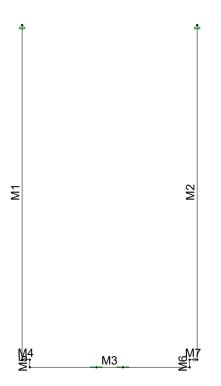

NOTES:

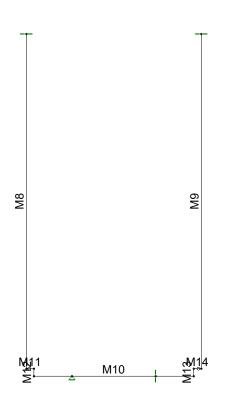

- THE ABOVE STATED ALLOWABLE LOADS ASSUME WOOD POST SPECIES HEM-FIR OR BETTER (i.e. G>0.43).
- DOWNLOADS SHALL BE REDUCED WHERE LIMITED BY CAPACITY OF THE POST OR FOUNDATION.
- ALLOWABLE LOADS SHOWN ARE FOR A SINGLE PB INSTALLED ON A CONCRETE BASE HAVING AT LEAST THE ABOVE STATED THICKNESS.
- ANALYSIS AND ALLOWABLE LOADS ARE FOR THE STEEL BRACKET. INCLUDED BOLTS. AND SPECIFIED CONCRETE ANCHORS ONLY.
- CONSULT WITH A LOCAL ENGINEER FOR EACH INDIVIDUAL INSTALLATION.
- NO DESIGN OF SUPPORTING OR SUPPORTED FRAMING OR FOUNDATION HAS BEEN CONDUCTED. CONSULT AN INDEPENDENT ENGINEER FOR DESIGN OF SUCH FRAMING OR FOUNDATION.
- UPLIFT LOADS HAVE BEEN INCREASED FOR WIND OR SEISMIC LOADING, WITH NO FURTHER INCREASE ALLOWED.
- ALLOWABLE LOADS ARE FOR VERTICAL LOADS ONLY. LATERAL BRACING MUST BE SUPPLIED BY OTHER LATERAL FORCE RESISTING SYSTEMS DESIGNED BY OTHERS. LATERAL BRACING SYSTEMS MUST BE INDEPENDENT FROM THE PB BRACKET & POSTS.
- ALLOWABLE LOADS SHOWN ARE FOR WET-SERVICE CONDITIONS (MOISTURE CONTENT > 19%). NO INCREASE ALLOWED FOR DRY-SERVICE.
- 10. PROVIDE THE FOLLOWING MINIMUMS FOR BOLTS THRU WOOD POST & STEEL PLATE:
 - EDGE DISTANCE = CENTER COLUMN ON BRACKET EACH WAY.
 - END DISTANCE = 3 ½ INCHES (END OF POST TO CENTER OF MIDDLE THRU-BOLT)
- 11. PROVIDE THE FOLLOWING MINIMUMS FOR TITEN HD CONCRETE ANCHORS:
 - EDGE DISTANCE = 4½ INCHES ALL AROUND. a.
- 12. PROVIDE THE FOLLOWING MINIMUMS FOR TITEN 2/TITEN TURBO CONCRETE SCREWS:
 - a. EDGE DISTANCE = 3 INCHES ALL AROUND.
- 13. BOLT HOLES SHALL BE A MINIMUM OF 1/32" AND A MAXIMUM OF 1/16" LARGER THAN THE BOLT DIAMETER (PER 2012 NDS SEC. 11.1.3.2)
- 14. POST & PB ARE ASSUMED TO BE INSTALLED IN A VERTICALLY PLUMB POSITION WITH POST BEING LOADED CONCENTRICALLY ABOUT ITS CENTER EACH WAY.
- 15. BASEPLATE MAY EXPERIENCE INELASTIC YIELDING AT THE ABOVE STATED UPLIFT CAPACITY. SUBSEQUENT REPLACEMENT MAY BE REQUIRED.

FUGENE-SPRINGFIELD

STRENGTH LEVEL LOADS CONVERT TO SERVICE LEVEL WL(LRFD) * 0.6 = WL(ASD) 1150# * 0.6 = 690# 2 * 930# * 0.6 = 1116#

Loads: BLC 1, Uplift Results for LC 2, Uplift


Y-direction Reaction Units are lb and lb-ft


BRANCH ENGINEERING,...
JOSHUA ANNETT

Feb 18, 2020 at 3:45 PM

Post Base.r2d

z_x

BRANCH ENGINEERING,
JOSHUA ANNETT

Feb 18, 2020 at 3:50 PM

Post Base.r2d

: BRANCH ENGINEERING, INC. : JOSHUA ANNETT

May 26, 2022 10:47 AM

Checked By: RICK HERNANDEZ, P.E., S.E.

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5 F)	Density[lb/ft^3]	Yield[ksi]
1	A36 Gr.36	29000	11154	.3	.65	490	36

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	I (90,270) [in4]	I (0,180) [in4]
1	HR1A	PL1/4x2.75	Beam	None	A36 Gr.36	Typical	.688	.004	.433
2	HR2	PL1/4x1.25	Beam	None	A36 Gr.36	Typical	.313	.002	.041

Member Primary Data

	Label	I Joint	J Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N1	N2	90	HR1A	Beam	None	A36 Gr.36	Typical
2	M2	N3	N4	90	HR1A	Beam	None	A36 Gr.36	Typical
3	M3	N5	N6	90	HR1A	Beam	None	A36 Gr.36	Typical
4	M4	N2	N7	90	HR2	Beam	None	A36 Gr.36	Typical
5	M5	N7	N5	90	HR1A	Beam	None	A36 Gr.36	Typical
6	M6	N6	N8	90	HR1A	Beam	None	A36 Gr.36	Typical
7	M7	N8	N4	90	HR2	Beam	None	A36 Gr.36	Typical
8	M8	N10	N11	90	HR1A	Beam	None	A36 Gr.36	Typical
9	M9	N12	N13	90	HR1A	Beam	None	A36 Gr.36	Typical
10	M10	N14	N15	90	HR1A	Beam	None	A36 Gr.36	Typical
11	M11	N11	N16	90	HR2	Beam	None	A36 Gr.36	Typical
12	M12	N16	N14	90	HR1A	Beam	None	A36 Gr.36	Typical
13	M13	N15	N17	90	HR1A	Beam	None	A36 Gr.36	Typical
14	M14	N17	N13	90	HR2	Beam	None	A36 Gr.36	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rati	TOM	Inactive
1	M1					_	Yes			
2	M2						Yes			
3	M3						Yes			
4	M4	PIN					Yes	Default		
5	M5						Yes			
6	M6						Yes			
7	M7		PIN				Yes	Default		
8	M8						Yes			
9	M9						Yes			
10	M10						Yes			
11	M11	PIN					Yes	Default		
12	M12						Yes			
13	M13						Yes			
14	M14		PIN				Yes	Default		

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lb-out[in]	Lb-in[in]	Lcomp top[in]	Lcomp bot[in]	L-torq	K-out	K-in	Cb	Function
1	M1	HR1A	10.995			Lb out		,				Lateral
2	M2	HR1A	10.995			Lb out						Lateral
3	M3	HR1A	5.25			Lb out						Lateral
4	M4	HR2	.25			Lb out						Lateral
5	M5	HR1A	.25			Lb out						Lateral
6	M6	HR1A	.25			Lb out						Lateral
7	M7	HR2	.25			Lb out						Lateral

: BRANCH ENGINEERING, INC. : JOSHUA ANNETT

May 26, 2022 10:47 AM

Checked By: RICK HERNANDEZ, P.E., S.E.

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lb-out[in]	Lb-in[in]	Lcomp top[in	Lcomp bot[in	L-torg	K-out	K-in	Cb	Function
8	M8	HR1A	10.995			Lb out						Lateral
9	M9	HR1A	10.995			Lb out						Lateral
10	M10	HR1A	5.25			Lb out						Lateral
11	M11	HR2	.25			Lb out						Lateral
12	M12	HR1A	.25			Lb out						Lateral
13	M13	HR1A	.25			Lb out						Lateral
14	M14	HR2	.25			Lb out						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed	
1	Uplift	WL			4			

Joint Loads and Enforced Displacements (BLC 1 : Uplift)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N10	L	Υ	930
2	N12	L	Υ	930
3	N1	L	Υ	575
4	N3	L	Υ	575

Load Combinations

	Description	So	.P	S	BLC	Fac	BLC	Fac	. BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac	BLC	Fac
1	LRFD																							
2	Uplift		Υ		WL	1																		

Joint Reactions

	LC	Joint Label	X [lb]	Y [lb]	MZ [lb-ft]
1	2	N1	364	Ō	Ō
2	2	N3	.364	0	0
3	2	N9	0	-575	0
4	2	N10	749	0	0
5	2	N12	.749	0	0
6	2	N18	0	-929.997	0
7	2	N19	0	-930.003	0
8	2	N20	0	-575	0
9	2	Totals:	0	-3010	
10	2	COG (in):	X: 10.29	Y: 11.245	

<1.0 = OK!

Member AISC 15th(360-16): LRFD Steel Code Checks

	LC	Member	Shape	UC Max	Loc[in]	Shear UC	Loc[in]	phi*Pnc[lb]	phi*Pnt[lb]	phi*Mn[lb-ft]	Cb	Egn
1	2	M1	PL1/4x2.75	.013	0	.000	0	6691.459	22275	116.016	1	H1-1b
2	2	M2	PL1/4x2.75	.013	0	.000	0	6691.459	22275	116.016	1	H1-1b
3	2	M3	PL1/4x2.75	1.004	3.063	.043	0	16858.764	22275	116.016	1	H1-1b
4	2	M4	PL1/4x1.25	.227	.25	.095	0	10118.606	10125	52.734	1	H1-1b
5	2	M5	PL1/4x2.75	.116	0	.001	0	22260.933	22275	116.016	1	H1-1b
6	2	M6	PL1/4x2.75	.116	.25	.001	0	22260.933	22275	116.016	1	H1-1b
7	2	M7	PL1/4x1.25	.227	0	.095	0	10118.606	10125	52.734	1	H1-1b
8	2	M8	PL1/4x2.75	.021	0	.000	0	6691.459	22275	116.016	1	H1-1b
9	2	M9	PL1/4x2.75	.021	0	.000	0	6691.459	22275	116.016	1	H1-1b
10	2	M10	PL1/4x2.75	.996	3.992	.070	0	16858.764	22275	116.016	1	H1-1b

May 26, 2022 10:47 AM Checked By: RICK HERNANDEZ, P.E., S.E.

Member AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	LC	Member	Shape	UC Max	Loc[in]	Shear UC	Loc[in]	phi*Pnc[lb]	phi*Pnt[lb]	phi*Mn[lb-ft]	Cb	Eqn
11	2	M11	PL1/4x1.25	.367	.25	.153	0	10118.606	10125	52.734	1	H1-1b
12	2	M12	PL1/4x2.75	.188	0	.003	0	22260.933	22275	116.016	1	H1-1b
13	2	M13	PL1/4x2.75	.188	.25	.003	0	22260.933	22275	116.016	1	H1-1b
14	2	M14	PL1/4x1.25	.367	0	.153	0	10118.606	10125	52.734	1	H1-1b

DATE: 5/26/2022

Since 1977 310 5th Street

civil • transportation Springfield, Oregon 97477 structural • geotechnical SURVEYING

PROJECT: 18-220 WOODSTONE STRUCTURES

BY: JOSHUA ANNETT

CHECKED BY: RICK HERNANDEZ, P.E., S.E.

SHEET: PLvert (Post Base)

Bolted Shear Connection Design for Bolts in Standard Holes

Shear Yielding: $\phi R_n =$ 14.85 kip Tensile Yielding: $\phi R_n =$ 22.28 kip Shear Rupture: $\phi R_n =$ 48.53 kip Tensile Rupture: $\phi R_n =$ 23.11 kip Block Shear Rupture: $\phi R_n =$ 44.61 kip Bolt Shear Strength: $\phi R_n =$ 11.93 kip

Bearing Strength at Bolt Hole: $\phi R_n =$ 39.15 kip

> 11.93 kips **Connection Design Strength:**

CAPACITY OF SIDE PLATE AT BOLT HOLES WL(ASD) = 2 * 0.6 WL = 9,540#

DATE: 5/26/2022

civil · transportation structural · geotechnical SURVEYING

Spacing between rows: 0.5 in

Since 1977 310 5th Street

Telephone: (541) 746 0637

PROJECT: 18-220 WOODSTONE STRUCTURES

BY: JOSHUA ANNETT

CHECKED BY: RICK HERNANDEZ, P.E., S.E.

SHEET: PLvert (Post Base at Baseplate)

Bolted Shear Connection Design for Bolts in Standard Holes

Shear Yielding: $\phi R_n =$ 10.13 kip Tensile Yielding: $\phi R_n =$ 22.28 kip Shear Rupture: $\phi R_n =$ 6.12 kip Tensile Rupture: $\phi R_n =$ 9.52 kip Block Shear Rupture: $\phi R_n =$ 4.24 kip

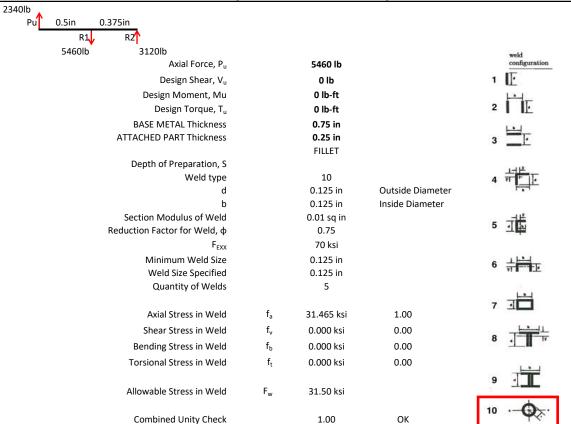
Bolt Shear Strength: $\phi R_n =$

Bearing Strength at Bolt Hole: $\phi R_n =$ 8.97 kip

> **Connection Design Strength:** 4.24 kips

DATE: 5/26/2022

BY: JOSHUA ANNETT


PROJECT: 18-220 WOODSTONE STRUCTURES

civil · transportation structural · geotechnical SURVEYING 310 5th Street Springfield, Oregon 97477

Telephone: (541) 746 0637 CHECKED BY: RICK HERNANDEZ, P.E., S.E.

SHEET: weld

Combined Strength of Weld in Axial, Shear, & Bending

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019			
Engineer:		Page:	1/5			
Project:						
Address:	310 5TH STREET					
Phone:	(541) 746-0637					
E-mail:	JOSHA@BRANCHENGINEERING.COM					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.625

Nominal Embedment depth (inch): 4.000 Effective Embedment depth, her (inch): 2.970

Code report: ICC-ES ESR-2713

Anchor category: 1 Anchor ductility: No h_{min} (inch): 6.00 c_{ac} (inch): 4.50 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 6.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 6.00 x 2.50 x 0.25

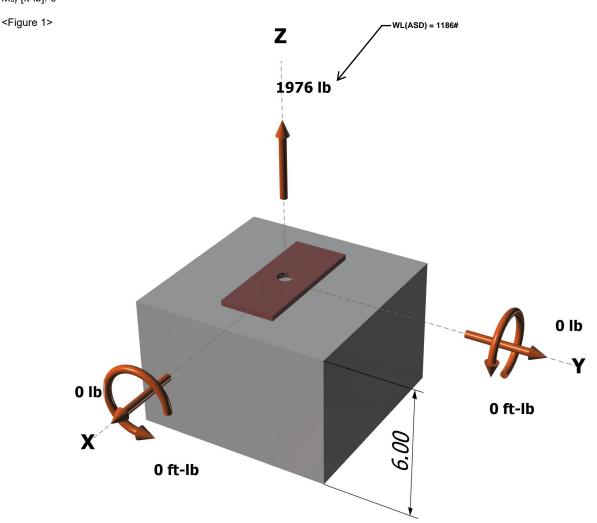
Recommended Anchor

Anchor Name: Titen HD® - 5/8"Ø Titen HD (THDB model), hnom:4" (102mm) Code Report: ICC-ES ESR-2713

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019			
Engineer:		Page:	2/5			
Project:						
Address:	310 5TH STREET					
Phone:	(541) 746-0637					
E-mail:	JOSHA@BRANCHENGINEERING.COM					

Load and Geometry

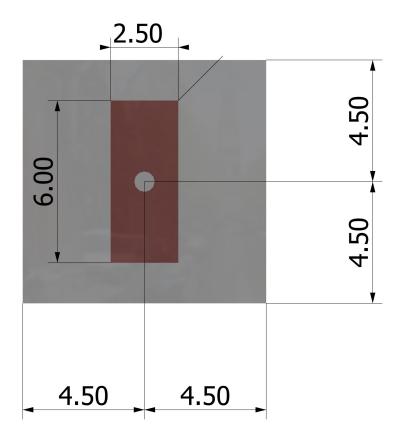
Load factor source: ACI 318 Section 9.2


Load combination: not set Seismic design: No

Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

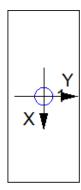

Nua [lb]: 1976 V_{uax} [lb]: 0 V_{uay} [lb]: 0 M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 0

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019			
Engineer:		Page:	3/5			
Project:						
Address:	310 5TH STREET					
Phone:	(541) 746-0637					
E-mail:	JOSHA@BRANCHENGINEERING.COM					

<Figure 2>

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019			
Engineer:		Page:	4/5			
Project:						
Address:	310 5TH STREET					
Phone:	(541) 746-0637					
E-mail:	JOSHA@BRANCHENGINEERING.COM					

3. Resulting Anchor Forces


Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1976.0	0.0	0.0	0.0
Sum	1976 0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1976 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e^i_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e^i_{Ny} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{Sa} (lb)
30360	0.65	19734

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-6)

<i>k</i> _c	λ_a	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	2.970	4351				
$\phi N_{cb} = \phi (A_N)$	lc / ANco) $\Psi_{\text{ed},N} \Psi_{\text{c},l}$	$_{N}arPsi_{\mathcal{C}\mathcal{P},N} N_{b}$ (Sec. \square	.4.1 & Eq. D-3)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb
79.39	79.39	4.50	1.000	1.00	1.000	4351	0.65	2828

6. Pullout Strength of Anchor in Tension (Sec. D.5.3)

 $\phi N_{PR} = \phi \Psi_{c,P} \lambda_a N_P (f'_c / 2,500)^n$ (Sec. D.4.1, Eq. D-13 & Code Report)

$\Psi_{c,P}$	λa	N_p (lb)	f'_c (psi)	n	ϕ	ϕN_{pn} (lb)
1.0	1.00	3040	2500	0.50	0.65	1976

Company:	BRANCH ENGINEERING, INC.	Date:	10/21/2019			
Engineer:		Page:	5/5			
Project:						
Address:	310 5TH STREET					
Phone:	(541) 746-0637					
E-mail:	JOSHA@BRANCHENGINEERING.COM					

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1976	19734	0.10	Pass
Concrete breakout	1976	2828	0.70	Pass
Pullout	1976	1976	1.00	Pass (Governs)

5/8"Ø Titen HD (THDB model), hnom:4" (102mm) meets the selected design criteria.

5/26/2022 DATE:

Since 1977 310 5th Street

BY: JOSHUA ANNETT CHECKED BY: RICK HERNANDEZ, P.E., S.E.

SHEET: Fasteners (POST BASE)

PROJECT: 18-220 WOODSTONE STRUCTURES

civil • transportation Springfield, Oregon 97477 structural • geotechnical SURVEYING SURVEYING

FASTENER LATERAL DESIGN VALUES

						ALLOWABLE LA		I				
								PENETRATION				TOTAL
			SINGLE/	STEEL SIDE				LENGTH INTO		LOAD		ADJUSTED
	FASTENER		DOUBLE	MEMBER	MAIN	PARALLEL TO	PERP. TO	MAIN		DURATION	WET SERVICE	ALLOWABLE
QTY	DIAMETER	TYPE	SHEAR	THICKNESS	MEMBER	GRAIN	GRAIN	MEMBER, p	p/8D	FACTOR, CD	FACTOR, CM	SHEAR, Z'
2	0.5	BOLT	DOUBLE	0.25	3.5	1650		THRU	1	1.6	0.7	3696

										BASIC	CONCRETE		
			CRITICAL	EFFECTIVE		MODIFICATIO				CONCRETE	BREAKOUT	PULLOUT	STEEL
			EDGE DIST,	EMBEDMENT	EFFECTIVENES	N FACTOR,				BREAKOUT,	STRENGTH,	STRENGTH,	STRENGTH,
			cac	DEPTH, hef	S FACTOR, k	ψcN	Фсь	Anc	Anco	Nb	ФсьNсь	ФрNр	ФsaNsa
		CONC											
4	0.25	SCREW	3	1.3	24	1	0.65	15.21	15.21	1778.674	4625	4940	5655
											MINI WI - 4	325# * 0.6 - 2	775#

MIN WL = 4625# * 0.6 = 2775#

IBC T

THE INFORMATION BELOW IS NOT A PART OF THIS REPORT - INCLUDED FOR REFERENCE ONLY.

NDS TABLE 12G

Thickness								당
Main Member	Side Member	Bolt Diameter	G=0.67 Red Oak G=0.55		G=0.55 Mixed Maple Southern Pine		G=0.50 Douglas Fir-Larch	
t _m in.	t _s	D in.	Z _{II}	Z _{III}	Z _{II}	Z _⊞	Z _{II}	Z _{III}
	111.	1/2	1870	1240		1100	-	
		5/8	2740	1720				1230
3-1/2	1/4	3/4		2070		1550		1370
		7/8		2240		1680	4290	1470
		1	6520			1790		1580
		5			0540			4 400

Titen Turbo Tension Strength Design Data ¹			IB	C 📑		* Titen 2 Ter	nsion Strength Design Data ¹			IBC	1	
Characteristic	Symbol	Units	Nominal A	Nominal Anchor Diameter (ir			Characteristic		Units	Nominal And	hor Diar	neter (in.)
Cildracteristic	Зушьог	Units	3 /16		1/4	Gilaracteristic		Symbol	Units	3∕16		1/4
Anchor Category	1, 2 or 3	_		- 1		Anchor Cate	gory	1, 2 or 3	_		1	
Embedment Depth	h _{nom}	in.	13/4		1¾	Embedment	Depth	h _{nom}	in.	13/4		13/4
Stee	Strength in Tensio	n					Stee	Strength in Tension	n			
Tension Resistance of Steel	N_{sa}	lb.	1,640		2,640	Tension Resi	stance of Steel	N_{Sa}	lb.	2,175		3,175
Strength Reduction Factor — Steel Failure	φ _{sa}	_		0.65		Strength Red	luction Factor — Steel Failure	φsa	_		0.65 ²	
Concrete Br	eakout Strength in	Tension					Concrete Br	reakout Strength in	Tension ⁶			
Effective Embedment Depth	h _{ef}	in.	1.25		1.20	Effective Eml	bedment Depth	h _{ef}	in.	1.30		1.30
Critical Edge Distance	Cac	in.	3		3	Critical Edge	Distance	cac	in.	3		3
Effectiveness Factor — Uncracked Concrete	Kuner	_		24		Effectiveness	Factor — Uncracked Concrete	Kuncr	_		24	
Modification Factor	$\Psi_{c,N}$	_		1.0		Modification	Factor	$\Psi_{c,N}$			1.0	
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_		0.65		Strength Red	luction Factor — Concrete Breakout Failure	ϕ_{cb}	_		0.65^{3}	
Pullou	ıt Strength in Tensi	on					Pullou	it Strength in Tensio	n ⁶			
Pullout Resistance Uncracked Concrete (f'c = 2,500 psi) ⁴	N _{p,uncr}	lb.	1,515		1,515	Pullout Resis	tance Uncracked Concrete (f' _c = 2,500 psi) ⁴	N _{p,uncr}	lb.	1,900		1,900
Strength Reduction Factor — Pullout Failure	ϕ_p	_		0.65		Strength Red	luction Factor — Pullout Failure	ϕ_p	— .		0.655	
				_								

USE 3/16" SCREW VALUES DUE TO SPACING OF SCREWS IN BRACKET

iten Turbo Installation Information and	d Additional Data	1	IBC				
Characteristic	Combal	Units	Nominal Ancho	Nominal Anchor Diameter (in.)			
Gidiacterisuc	Symbol	Units	₹is	1/4			
	Installation Informa	tion					
Drill Bit Diameter	d	in.	5/32	3/16			
Minimum Baseplate Clearance Hole Diameter	$d_{\mathcal{C}}$	in.	1/4	5/16			
Minimum Hole Depth	h _{hole}	in.	21/4	21/4			
Embedment Depth	h _{nom}	in.	13/4	1¾			
Effective Embedment Depth	h _{ef}	in.	1.25	1.20			
Critical Edge Distance	Cac	in.	3	3			
Minimum Edge Distance	Cmin	in.	13/4	1¾			
Minimum Spacing	Smin	in.	1	2			
Minimum Concrete Thickness	h _{min}	in.	31/4	31/4			
	Additional Data						
Yield Strength	f _{ya}	psi	100	,000			
Tensile Strength	f _{uta}	psi	125	,000			
Minimum Tensile and Shear Stress Area	Ase	in.2	0.0131	0.0211			

Torialio autorigui	100	poi
Minimum Tensile and Shear Stress Area	A _{se}	in.2
The information presented in this table is to be used in c	onjunction with the	design criteria of

			Nominal Ancho	r Diameter (in.)
Characteristic	Symbol	Units	¥16	
	Installation Informati	on		
Drill Bit Diameter	d	in.	5/32	3/16
Minimum Baseplate Clearance Hole Diameter	d _c	in.	1/4	5/16
Minimum Hole Depth	h _{hole}	in.	21/4	21/4
Embedment Depth	h _{nom}	in.	13/4	1%
Effective Embedment Depth	h _{ef}	in.	1.30	1.30
Critical Edge Distance	Cac	in.	3	3
Minimum Edge Distance	Cmin	in.	1%	1%
Minimum Spacing	S _{min}	in.	1	2
Minimum Concrete Thickness	h _{min}	in.	31/4	31/4
	Additional Data			
Yield Strength	f _{ya}	psi	100	,000
Tourist Character			100	000

Titen 2 Installation Information and Additional Data¹

Technical Products, Inc. P: 262-335-3635 | F: 262-335-3606 E: tpi@technicalproductsinc.com www.technicalproductsinc.com

UHMW STANDOFF BASE

NOT A PART OF THIS REPORT - INCLUDED FOR REFERENCE ONLY.

UHMW® Material Specifications

UHMW® is the ideal material for many wear parts in machinery and equipment. Polyethylenes are semi-crystalline materials with excellent chemical resistance, good fatigue and wear resistance, and a wide range of properties.

Physical Properties	Units	Test	UHMW®
Density	lb/in³	D792	0.034
	g/cm³		0.93
Water Absorption, 24 hrs.	%	D570	< 0.01

Mechanical Properties	Units	Test	UHMW®	
Tensile Strength	@ 72ºF psi	D638	5800	
Tensile Strength	@ 150ºF psi	D638	400	
Tensile Modules	psi	D638	80,000	
Tensile Elongation at Break	%	D638	300	
Flexural Strength at Yield	psi	D790	3500	
Flexural Modulus	psi	D790	88,000	
Compressive Strength	psi	D695	3000	
Compressive Modulus	psi	D695	80,000	
Shear Strength	psi	D732	3000	
Hardness, Shore D	-	D785	D62 - D66	
Izod Impact Notched	ft-lb/in	D256	No Break	

Thermal Properties	Units	Test	UHMW®
Coefficient of Linear	X 10 ⁻⁵ in./in./°F	D696	11
Thermal Expansion			
Heat Deflection Temperature	@ 66 psi °F/°C	D648	203 / 95
	@ 264 °F/°C		180 / 82
Approx. Melting Temperature	ºF/ºC	D3418	275 / 136
Max. Operating Temperature	ºF/ºC	-	180 / 82
Thermal Conductivity	BTU- in/ft ² -hr°F	C177	2.84
	x 10 ⁻⁴ cal/cm-sec-°C		10.0
Flammability Rating	-	UL94	НВ

Electrical Properties	Units	Test	UHMW®
Dielectric Strength	(V/mil) short time, 1/8" thick	D149	2300
Dielectric Constant	@1 MHz	D150	2.30 - 2.35
Dissipation Factor	@1 KHz	D150	0.0005
Surface Resistivity	ohm/square @ 50% RH	D257	>10 ¹⁵
Arc Resistance	sec	D495	250 - 350

^{**}The information provided in this table is a compilation of publicly available data. This information is provided for comparison purposes only, and is not intended to be warrantable. Further, *Technical Products, Inc.* disclaims any and all liability from errors, in accuracies, or omissions.

DATE: 5/26/2022

Since 1977 310 5th Street

civil • transportation Springfield, Oregon 97477 structural • geotechnical SURVEYING

11) 746 0637 CHECKED BY: RICK HERNANDEZ, P.E., S.E.

SHEET: Capacity Summary

BY: JOSHUA ANNETT

PROJECT: 18-220 WOODSTONE STRUCTURES

FASTENER LATERAL DESIGN VALUES

TASTENER LATERAL DESIGN VALUES					
			ALLOWABLE	ALLOWABLE	
			WIND UPLIFT	WIND UPLIFT	
			LOAD w/ (1)	LOAD w/ (4)	
			ANCHOR AT	ANCHORS AT	
	COMPONENT	QTY	CENTER	EQ SPACING	
THRU-BOLTS IN WOOD COLUMN		1	3696 lb	3696 lb	
STEEL ASSEMBL	CONCRETE ANCHOR	1	1186 lb	2363 lb	
	STEEL ASSEMBLY	2	690 lb	1116 lb	CONTROLS DESIGN
	FILLET WELD IN HOLE	2	2808 lb	2808 lb	
BOLT HOLES IN STEEL		2	14314 lb	14314 lb	
SIDE-PLATE TO BASEPLATE CONNECTION		2	5085 lb	5085 lb	

ALLOWABLE DOWN LOAD AT BASE

BEARING AREA

f'c=2500psi SF=2 fc=3000psi CONCRETE 26114 lb
UHMW BASE 36681 lb

30.25sq in 24.45sq in

CONTROLS DESIGN